\(\frac{\sqrt{2}}{AD}=\frac{1}{AB}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2019

ABCD

Ta có : SABC=SDAB+SDACSABC=SDAB+SDAC

12AB.AC=12AB.AD.sin45o+12AC.AD.sin45o=12AD.sin45o(AB+AC)12AB.AC=12AB.AD.sin45o+12AC.AD.sin45o=12AD.sin45o(AB+AC)

AB+ACAB.AC=2AD2AD=1AB+1AC

23 tháng 5 2016

A B C D

1) Gọi AE là tia phân giác góc ngoài của tam giác tại A (E thuộc BC)

Ta có : \(S_{ABC}=\frac{1}{2}AB.AC=S_{ABD}+S_{ACĐ}=\frac{1}{2}AB.AD.sin45+\frac{1}{2}AC.AD.sin45\)

\(\Rightarrow AB.AC=\frac{\sqrt{2}}{2}\left(AB+AC\right).AD\Rightarrow\frac{\sqrt{2}}{AD}=\frac{1}{AB}+\frac{1}{AC}\)

23 tháng 5 2016

mk mới hoc lớp 6 thôi

15 tháng 10 2016

A B D C E

a/ \(S_{ABD}=\frac{1}{2}AB.AD.sin\widehat{BAD}=AB.AD.\frac{\sqrt{2}}{4}\)

\(S_{ACD}=\frac{1}{2}AC.AD.sin\widehat{CAD}=AC.AD.\frac{\sqrt{2}}{4}\)

\(S_{ABC}=\frac{1}{2}AB.AC\)

Suy ra : \(S_{ABC}=S_{ABD}+S_{ACD}\Leftrightarrow\frac{1}{2}AB.AC=\frac{\sqrt{2}}{4}AD.\left(AB+AC\right)\Rightarrow\frac{1}{AB}+\frac{1}{AC}=\frac{\sqrt{2}}{AD}\)

b/ Tương tự 

30 tháng 9 2019

A B C D E F

Đặt AB = a  ; AC = b ;  AD = c . Kẻ DE vuông góc AC ( \(E\in AB;F\in AC\) )
Ta có tứ giác AFDE là hình chữ nhật do \(\widehat{A}=\widehat{E}=\widehat{F}=90^o\) , AD phân giác trong của \(\widehat{EAF}\) nên \(\widehat{AFDE}\) là hình vuông . Suy ra 

\(DE=DF=\frac{AD\sqrt{2}}{2}=\frac{C\sqrt{2}}{2}\) . Ta có :

\(S_{DAB}+S_{DAC}=S_{ABC}\)

\(\Leftrightarrow\frac{1}{2}AB.DE+\frac{1}{2}DF.AC=\frac{1}{2}AC.AB\)

\(\Leftrightarrow\frac{c\sqrt{2}}{2}a+\frac{c\sqrt{2}}{2}b=ab\)

\(\Leftrightarrow\frac{\sqrt{2}}{c}=\frac{1}{a}+\frac{1}{b}\) . Hay \(\frac{\sqrt{2}}{AD}=\frac{1}{AB}+\frac{1}{AC}\)

Chúc bạn học tốt !!!