Cho tam giác ABC vuông tại A nội tiếp đường tròn (O, R) có BC là đường kính và AC=R. Kẻ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2020

1) Vì BC là đường kính của (O) nên BC=2R

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được: 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AB^2=BC^2-AC^2=\left(2R\right)^2-R^2=3R^2\)

hay \(AB=R\sqrt{3}\)(đvđd)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được: 

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot2R=R\cdot R\sqrt{3}\)

\(\Leftrightarrow AH=\dfrac{R^2\cdot\sqrt{3}}{2\cdot R}=\dfrac{R\sqrt{3}}{2}\)(đvđd)

Vậy: \(AB=R\sqrt{3}\)\(AH=\dfrac{R\sqrt{3}}{2}\)

2) Xét (O) có

OC là một phần đường kính

AD là dây

OC⊥AD tại H

Do đó: H là trung điểm của AD(Định lí đường kính vuông góc với dây)

\(HA=HD=\dfrac{AD}{2}\)

hay \(HA\cdot HD=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được: 

\(HB\cdot HC=AH^2\)(2)

Từ (1) và (2) suy ra \(HA\cdot HD=HB\cdot HC\)(đpcm)

20 tháng 12 2020

ban co the giup minh 2 y cuoi khong?

 

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

28 tháng 12 2020

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được: 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=\left(2\cdot R\right)^2-R^2=3\cdot R^2\)

\(\Leftrightarrow AC=R\cdot\sqrt{3}\)(đvđd)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được: 

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot2R=R\cdot R\sqrt{3}\)

hay \(AH=\dfrac{R\sqrt{3}}{2}\)(đvđd)

Xét ΔABC vuông tại A có

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{R\sqrt{3}}{2\cdot R}=\dfrac{\sqrt{3}}{2}\)

hay \(\widehat{ABC}=60^0\)

Xét ΔABC vuông tại A có 

\(\widehat{ABC}+\widehat{ACB}=90^0\)

\(\Leftrightarrow\widehat{ACB}=90^0-\widehat{ABC}=90^0-60^0\)

hay \(\widehat{ACB}=30^0\)

Vậy: \(AC=R\cdot\sqrt{3}\) đvđd; \(AH=\dfrac{R\sqrt{3}}{2}\)đvđd; \(\widehat{ABC}=60^0\)\(\widehat{ACB}=30^0\)

b) Xét (O) có 

BC là đường kính của (O)(gt)

AD là dây của đường tròn(O)

BC⊥AD tại H(gt)

Do đó: H là trung điểm của AD(Định lí đường kính vuông góc với dây)

⇔AH=HD

hay \(AH\cdot HD=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được: 

\(HB\cdot HC=AH^2\)(2)

Từ (1) và (2) suy ra \(AH\cdot HD=HB\cdot HC\)(đpcm)

8 tháng 8 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy HA là tiếp tuyến của đường tròn (O)