Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCAB có
P là trung điểm của BC
N là trung điểm của AC
Do đó: PN là đường trung bình của ΔABC
Suy ra: PN//BM và PN=BM
hay BMNP là hình bình hành
Answer:
Bài 7:
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
\(\Leftrightarrow\widehat{A}+120^o+60^o+90^o=360^o\)
\(\Leftrightarrow\widehat{A}=90^o\)
Gọi góc ngoài đỉnh A là \(\widehat{DAx}\)
\(\Rightarrow\widehat{DAx}=180^o-\widehat{DAB}\)
\(\Rightarrow\widehat{DAx}=180^o-90^o=90^o\)
Answer:
Bài 8:
a/ P là trung điểm BC (giả thiết)
N là trung điểm AC (giả thiết)
=> NP là đường trung bình
=> NP // AB hay NP // MB và \(NP=\frac{1}{2}AB\left(1\right)\)
Mà M là trung điểm của AB (giả thiết)
=> AM = MB = \(\frac{1}{2}AB\left(2\right)\)
Từ (1) và (2) => NP // MB và NP = MB
=> Tứ giác BMNP là hình bình hành
b/ Ta có: AM = NP và NP // MB hay NP // AM
=> AMPN là hình bình hành
Mà ta có \(\widehat{BAC}=90^o\)
=> AMPN là hình chữ nhật
=> AM = PN, AN = MP
c/ Vì Q đối xứng P qua N => PQ vuông góc AC, PN = NQ
Tương tự ta có: PR vuông góc AB, RM = MP
Ta xét hai tam giác RAM và AQN:
AM = QN (=NP)
\(\widehat{AMR}=\widehat{QNA}=90^o\)
RM = AN (=NP)
=> Tam giác RAM = tam giác AQN (c.g.c)
\(\Rightarrow\widehat{MAR}=\widehat{NQA}\)
Ta có: \(\widehat{NQA}+\widehat{QAN}=90^o\)
\(\Rightarrow\widehat{MAR}+\widehat{QAN}=90^o\)
Ta có: \(\widehat{BAC}=90^o\)
\(\Rightarrow\widehat{MAR}+\widehat{QAN}+\widehat{BAC}=180^o\)
=> R, A, Q thẳng hàng
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC và MN=BC/2(1)
hay BMNC là hình thang
b: Xét ΔGBC có
E là trung điểm của GB
F là trung điểm của GC
Do đó: EF là đường trung bình
=>EF//BC và EF=BC/2(2)
Từ (1) và (2) suy ra MN//FE và MN=FE
hay MNEF là hình bình hành
c: Xét ΔABC có
BN,CM là các đường trung tuyến
BN cắt CM tại G
Do đó: G là trọng tâm của ΔABC
mà AG cắt BC tại H
nên H là trung điểm của BC
Xét ΔABC có
H là trung điểm của BC
M là trung điểm của BA
Do đó: HM là đường trung bình
=>HM//AC và HM=AC/2
=>HM=AN và HM//AN
=>AMHN là hình bình hành
mà \(\widehat{MAN}=90^0\)
nên AMHN là hình chữ nhật
\(a,\left\{{}\begin{matrix}CM=MB\\NM=MD\end{matrix}\right.\Rightarrow BDCN\) là hbh
\(b,BDCN\) là hbh nên \(\left\{{}\begin{matrix}BD=CN=AN\\BD//CN.hay.BD//AN\end{matrix}\right.\Rightarrow ABDN\) là hbh
Mà \(\widehat{A}=90^0\) nên ABDN là hcn
Vậy \(AD=BN\)
\(c,\) Gọi G là giao BN và AE
Dễ dàng cm được \(\Delta NMG=\Delta DME\left(g.c.g\right);\Delta MEC=\Delta MGB\left(g.c.g\right)\)
\(\Rightarrow ED=NG;CE=GB\left(1\right)\)
\(\Delta ABC\) có AM,BN là trung tuyến; \(AM\cap BN=G\) nên G là trọng tâm
\(\Rightarrow2NG=GB\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow CE=2DE\)
a) ∆ABC có M, N lần lượt là trung điểm của AB, AC nên MN là đường trung bình của tam giác => MN // BC
Tứ giác MNCB có MN // BC nên là hình thang
b) Xét ∆EQN và ∆KQC có:
^ENQ = ^KCQ (BN//CK, so le trong)
QN = QC (gt)
^EQN = ^KQC (đối đỉnh)
Do đó ∆EQN = ∆KQC (g.c.g)
=> EN = KC ( hai cạnh tương ứng) (1)
∆NBC có Q là trung điểm của NC và QE // BC nên E là trung điểm của BN => EN = BE (2)
Từ (1) và (2) suy ra KC = BE
Tứ giác EKCB có KC = BE và KC // BE nên là hình bình hành => EK = BC (đpcm)
c) EF = EQ - FQ = 1/2BC - 1/2MN = 1/2BC - 1/4BC = 1/4BC (đpcm)
d) Gọi J là trung điểm của BC
Ta có EJ là đường trung bình của ∆NBC nên EJ // NC mà FI⊥NC nên FI⊥EJ
Tương tự suy ra EI⊥FJ suy ra I là trực tâm của ∆EFJ => JI⊥EF
Mà dễ thấy EF // BC nên IJ⊥BC
∆BIC có IJ vừa là đường cao vừa là trung tuyến nên là tam giác cân (đpcm)
a) Do M, N lần lượt là trung điểm của AB, AC nên MN là đường trung bình của tam giác ABC.
=> MN //BC
Tứ giác MNCB có MNBC nên MNCB là hình thang.
b) Xét tứ giác EKCB có EK//BC, BE//CK
=> EKCB là hình bình hành
=> EK = BC (đpcm)
BMNP mới là HBH chứ bạn ơi
a, Ta có: MN là đường trung bình của tam giác BAC, nên MN // =(1/2) BC và //= BP
PN là đường trung bình của tam giác BCA nên PN // =(1/2) AB và //= BM
Tứ giác BMNP có BM //PN, BP // MN => MNPB là HBH