K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2021

xét ΔABM và ΔCDM :

         AM = CM ( M là t/đ của AC )

       góc AMB = góc CMD ( đối đỉnh )

      MB = MD ( gt)

do đó : ΔABM = ΔCDM ( c.g.c )

b) Ta có: ΔABM=ΔCDM(cmt)

nên \(\widehat{MAB}=\widehat{MCD}\)(hai góc tương ứng)

mà \(\widehat{MAB}=90^0\)(gt)

nên \(\widehat{MCD}=90^0\)

Ta có: \(\widehat{MCD}+\widehat{MCB}=\widehat{DCB}\)(Tia CM nằm giữa hai tia CD,CB)

nên \(\widehat{DCB}>\widehat{MCD}\)

hay \(\widehat{DCB}>90^0\)

Xét ΔDCB có \(\widehat{DCB}>90^0\)(cmt)

mà cạnh đối diện với \(\widehat{DCB}\) là cạnh DB

nên DB là cạnh lớn nhất trong ΔDCB(Định lí)

hay DB>BC

mà BC>AC(ΔABC vuông tại A có BC là cạnh huyền nên BC là cạnh lớn nhất)

nên AC<BD(Đpcm)

5:

a: ΔABC cân tại A

mà AH là trung tuyến

nên AH vuông góc BC

BH=CH=4cm

=>AH=căn 10^2-4^2=2*căn 21(cm)

b: Xét ΔIBH và ΔIAD có

góc IBH=góc IAD

IB=IA

góc BIH=góc AID

=>ΔIBH=ΔIAD

=>AD=BH=HC

 

a: Xét tứ giác ABCD co

M là trung điểm chung của AC và BD

=>ABCD là hình bình hành

=>AB=CD và AB//CD

=>CD vuông góc AC

b: AB+BC=AB+AD>BD=2BM

c: góc ABM=góc CDB

mà góc CDB>góc CBM

nên góc ABM>góc CBM

14 tháng 12 2023

a: Xét ΔMAD và ΔMCB có

MA=MC

\(\widehat{AMD}=\widehat{CMB}\)(hai góc đối đỉnh)

MD=MB

Do đó: ΔMAD=ΔMCB

=>AD=BC

b: Xét ΔMAB và ΔMCD có

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)

MB=MD

Do đó: ΔMAB=ΔMCD

=>\(\widehat{MAB}=\widehat{MCD}=90^0\)

=>CD\(\perp\)CA

c: Xét tứ giác ABNC có

AB//NC

AC//BN

Do đó: ABNC là hình bình hành

=>AB=CN

Xét ΔABM vuông tại A và ΔCNM vuông tại C có

AB=CN

AM=CM

Do đó: ΔABM=ΔCNM

15 tháng 12 2023

C.ơn

17 tháng 12 2022

a: Xét ΔABM và ΔCDM có

MA=MC

góc AMB=góc CMD

MB=MD

Do đó: ΔABM=ΔCDM

b: ΔABM=ΔCDM

nên AB=CD và góc ABM=góc CDM

=>AB//CD

=>CE vuông góc với AC

=>AC vuông góc DE

7 tháng 3 2022

a.Xét ΔAMN và ΔCDN có:

          AN=CN (do N là trung điểm của AC)

          ANM=CND (2 góc đối đỉnh)

         MN=DN (do cách lấy điểm D)

=>ΔAMN=ΔCDN (c.g.c)

=>AM=CD (2 cạnh tương ứng)

Mà AM=MB (do M là trung điểm của AB)

=>MB=CD (=AM)

Mặt khác: ΔAMN=ΔCDN (cmt)

=>AMN=CDN (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong nên:

=>AM//CD hay MB//CD

b.Nối MC

Xét ΔBMC và ΔDCM có:

       MC chung

       BMC=DCM (2 góc so le trong, do MB//CD)

       BM=DC (cm câu a)

=>ΔBMC=ΔDCM (c.g.c)

=>BC=DM (2 cạnh tương ứng)

Lại có: MN=12DM (gt)

=>MN=12BC

Mặt khác: ΔBMC=ΔDCM (cmt)

=>BCM=DMC (2 góc tương ứng)

Mà hai góc này nằm ở vị trí so le trong nên:

=>MD//BC hay MN//BC.

15 tháng 12 2017
nhanh giùm với
16 tháng 12 2017

(Bạn tự vẽ hình giùm)

a/ \(\Delta ADM\)và \(\Delta CBM\)có: AM = CM (M là trung điểm của AC)

\(\widehat{AMD}=\widehat{BMC}\)(đối đỉnh)

DM = BM (gt)

=> \(\Delta ADM\)\(\Delta CBM\)(c. g. c) => AD = BC (hai cạnh tương ứng)

b/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)

\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)

BM = DM (gt)

=> \(\Delta ABM\)\(\Delta CDM\)(c. g. c)

=> \(\widehat{BAM}=\widehat{MCD}=90^o\)(hai góc tương ứng)

=> AC _|_ CD (đpcm)

a: Xét ΔABM và ΔCDM có

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)

MB=MD

Do đó: ΔABM=ΔCDM

b: ΔABM=ΔCDM

=>\(\widehat{MAB}=\widehat{MCD}=90^0\)

=>DC\(\perp\)AC

mà AC\(\perp\)AB

nên AB//DC

c: ΔMAB=ΔMCD

=>AB=CD

Xét ΔKAB và ΔKEC có

KA=KE

\(\widehat{AKB}=\widehat{EKC}\)

KB=KC

Do đó: ΔKAB=ΔKEC

=>AB=EC 

ΔKAB=ΔKEC

=>\(\widehat{KAB}=\widehat{KEC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//EC

AB//EC

AB//CD

CD,EC có điểm chung là C

Do đó: E,C,D thẳng hàng

AB=EC

AB=CD

Do đó: EC=CD

Ta có: E,C,D thẳng hàng

EC=CD

Do đó: C là trung điểm của ED

a) Xét ΔABM và ΔCDM có 

MA=MC(M là trung điểm của AC)

\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)

MB=MD(gt)

Do đó: ΔABM=ΔCDM(c-g-c)

b) Ta có: ΔABM=ΔCDM(cmt)

nên \(\widehat{MAB}=\widehat{MCD}\)(hai góc tương ứng)

mà \(\widehat{MAB}=90^0\)(gt)

nên \(\widehat{MCD}=90^0\)

\(\Leftrightarrow\widehat{ACD}=90^0\)

hay AC\(\perp\)CD(Đpcm)

5 tháng 12 2021

đpcm là j vậy bạn