Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác BDM và tam giác CEM có:
BM=CM(gt)
\(\widehat{BMD}\)=\(\widehat{CME}\)(vì đối đỉnh)
\(\Rightarrow\)tam giác BDM=tam giác CEM( CH-GN)
b, xét tam giác BEM và tam giác CDM có
BM=CM
\(\widehat{CMD}\)=\(\widehat{BME}\)(đối đỉnh)
MD=ME(theo câu a)
\(\Rightarrow\)\(\Delta\)BEM=\(\Delta\)CDM(c.g.c)
\(\Rightarrow\)\(\widehat{MCD}\)=\(\widehat{MBE}\) mà 2 góc này ở vị trí so le trong nên BE//CD
c) Xét tam giác ABM có: MH vuông AB, BD vuông AM
Mà BD cắt MH tại I
=> I là trực tâm
Gọi J là giao của AI và BC khi đó:
AJ vuông BC
Xét 2 tam giác vuông AJM vàCEM có:
AM=MC(=1/2BC)( vì tam giác ABC vuông thì trung tuyến bằng 1/2 cạnh huyền)
góc IMA=góc EMC
=> Tam giác ẠM=tam giác CEM
=> \(\widehat{JAM}=\widehat{ECM}\) mặt khác MA=MC=> tam giác MAC cân => \(\widehat{MAN}=\widehat{MCN}\)
từ đó suy ra \(\widehat{IAN}=\widehat{ECN}\)
Gọi K là giao điểm của AI và CE
=> tam giác KAC cân
=> KA=KC
=> K nằm trên đường trung trực AC
Mặc khác MN là đường cao của tam giác cân MAC
=> MN là đường trung trực của AC
=> MN qua K
vậy MN, AI và CE đồng quy tại K
=>
a) Áp dụng định lí Pi - ta - go, ta có:
102 - 52 = 75 => AC = \(\sqrt{75}\)
Còn mấy phần kia mình hơi vội nên chưa lm đc thông cảm nhé
a: XétΔAMB và ΔCMD có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
Do đó: ΔAMB=ΔCMD
b: Xét ΔAHM vuông tại H và ΔCKM vuông tại K có
MA=MC
\(\widehat{AMH}=\widehat{CMK}\)
DO đó: ΔAHM=ΔCKM
Suy ra: MH=MK
Xét tứ giác AHCK có
Mlà trung điểm của AC
M là trung điểm của HK
Do đó: AHCK là hình bình hành
Suy ra: AK=CH