Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: M và D đối xứng với nhau qua AB
nên AB là đường trung trực của MD
=>AM=AD(1)
Ta có: M và E đối xứng nhau qua AC
nên AC là đường trung trực của ME
=>AM=AE(2)
Từ (1) và (2) suy ra AD=AE
b: Ta có: ΔADM cân tại A
mà AB là đường cao
nên AB là tia phân giác của góc DAM(1)
Ta có: ΔAEM cân tại A
mà AC là đường cao
nên AC là tia phân giác của góc EAM(2)
Từ (1) và (2) suy ra \(\widehat{DAM}+\widehat{EAM}=2\cdot\widehat{A}=2x\)
hay \(\widehat{DAE}=2\cdot x\)
)Tam giác ABC có AB=30cm, AC=40cm. Trên tia đối của tia AC lấy điểm D sao cho AD=AB. Qua A kẻ đường d vuông góc với BD. Gọi M là điểm bất kì thuộc đường thẳng d. Tìm giá trị nhỏ nhất của tổng BM+MC
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
b: Xét ΔAMD và ΔANB có
AM=AN
MD=NB
AD=AB
Do đó: ΔAMD=ΔANB
Xin lỗi mk ko biết vẽ hình trên máy
a) Xét tam giác ABD và tan giác EBD có :
BD chung
góc ABD = góc EBD ( vì BD la phân giác góc B )
góc A = góc E ( = 90 )
=> Tam giác ABD = tam giác EBD ( cạnh huyền- góc nhọn )
=> AD = DE
Chúc bạn hc tốt
a: M đối xứng D qua AB
=>AB là trung trực của MD
=>AM=AD
=>AB là phân giác của góc MAD(1)
M đối xứng E qua AC
=>AC là trung trực của ME
=>AM=AE
=>AC là phân giác của góc MAE(2)
Từ (1), (2) suy ra góc DAE=2*90=180 độ
=>D,A,E thẳng hàng
mà AD=AE
nên A là trung điểm của DE
b: Xét ΔMED có
MA là trung tuyến
MA=DE/2
=>ΔMED vuông tại M
c: Xét ΔAMB va ΔADB có
AM=AD
góc MAB=góc DAB
AB chung
=>ΔAMB=ΔADB
=>góc ADB=90 độ
=>BD vuông góc DE(3)
Xét ΔAMC và ΔAEC có
AM=AE
MC=EC
AC chung
=>ΔAMC=ΔAEC
=>góc AEC=90 độ
=>CE vuông góc ED(4)
Từ (3), (4) suy ra DB//CE