Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D I E 1
a) Tam giác BIA bằng tam giác BIE theo trường hợp GCG (cạnh chung AI)
b) tam giác ABD vuông tại A nên \(\widehat{ABD}=90^o-\widehat{D_1}\) (1)
Tam giác AID vuông ở I nên \(\widehat{IAD}=90^o-\widehat{D_1}\) (2)
Từ (1) và (2) suy ra \(\widehat{ABD}=\widehat{IAD}\), hay là \(\widehat{ABD}=\widehat{EAC}\)
c) Theo câu a) tam giác BIA bằng tam giác BIE nên suy ra BA = BE.
Xét 2 ta giác: BAD và BED có AD chung, BA = BE và góc BAD = góc EAD
=> Tam giác BAD = tam giác BED => Tam giác BED vuông ở E
Bạn xem lời giải ở đường link dưới:
Câu hỏi của Nguyễn Ngọc Vy - Toán lớp 7 - Học toán với OnlineMath
E C B A D I
A)Xét tam giác ADB và tam giác AEC có
\(\widehat{AEC}=\widehat{ADB=90}^0\left(GT\right)\)
\(AB=AC\left(GT\right)\)
\(\widehat{A}chung\)
Từ ba điều trên => tam giác ABD= tam giác AEC( G.C.G)
=> BD=CE( 2 CẠNH T/Ư)
B) Xét tam giác AED, có: \(AE=AD\)(tam giác ADB= tam giác AEC)
=> Tam giác AED là tam giác cân
C) câu c) mk chư bt lm
c ) +)Xét tam giác AEI và tam giác ADI có :
\(\widehat{E}=\widehat{D}\left(=90\right)^o\)
AE = AD ( cmt )
AI chung
=> Tam giác AEI = Tam giác ADI ( ch - cgv)
=> Góc DAI = Góc EAI ( hai góc tương ứng )
Mà AI nằm giữa AB và AC nên AI là đường phân giác của góc BAC( ĐPCM )
+) Gọi điểm H là giao của BC và AI .
Xét tam giác ABC có :
BD là đường cao thứ nhất
CE là đường cao thứ hai
=> AH phải là đường cao thứ ba (t/c đường cao trong tam giác )
=> \(Ah⊥BC\)
Mà I thuộc AH => \(AI⊥BC\)
Câu c:
Ta có: tam giác ABE = tam giác KBE (cmt)
=> AE = KE (2 cạnh tương ứng), mà E thuộc AK (gt)
=> E là trung điểm của AK (t/c)
Mà BE vuông góc với AK tại E (gt)
=> BE là đường trung trực của đoạn AK (t/c)
Có D thuộc BE => ED là đường trung trực của AK
=> AD = KD
=> tam giác ADK cân tại D (dhnb)
=> góc KAD = góc AKD (t/c) (1)
Có AH vuông góc với BC tại H (giả thiết)
DK vuông góc với BC tại K (cmt)
Từ 2 điều đó => AH // DK (do cùng vuông góc với BC)
=> góc HAK = góc AKD (2 góc so le trong) (2)
Từ (1) và (2) => góc KAD = góc HAK (cùng = góc AKD)
mà tia AK nằm giữa 2 tia AH và AD
=> AK là tia phân giác góc HAC
Câu d:
Có AH cắt BD tại I (gt) => I thuộc BD
=> I thuộc trung trực của AK
=> IA = IK (t/c)
=> Tam giác IAK cân tại I (dhnb)
=> góc IAK = góc IKA
mà góc IAK = góc KAD (cmt)
=> góc IKA = góc KAD (= góc IAK)
mà góc IKA và góc KAD nằm ở vị trí so le trong
=> IK // AC (dhnb 2 đường thẳng //)
cho t.giác ABC vuông ở C, có \(\widehat{C}\)=60 độ là sao vậy bn,đã vuông thì pk = 90 độ chứ
lời giải câu c) nè bn...
Hình thì bn tự vẽ nha....
c) Xét tam giác BAD và tam giác BED ta có:
+> BA=BE (cmt câu b)
+> Góc ABD = góc EBD (vì BD là phân giác của góc ABC)
+> Chung cạnh BD
=> Tam giác BAD = tam giác BED (c-g-c)
=> góc BAD = góc BED
Mà góc BAD = 90độ
=> Góc BED =90 độ
=> Tam giác BED vuông tại E (ĐPCM)
Bn vẽ xg hình là nhìn ra ngay ý ạ....
Nếu thấy đúng tích cho mk nha...
Câu c) Bạn tự vẽ hình nha
Do BD là phân giác góc \(\widehat{ABC}\)
=> \(\widehat{DBC}=\widehat{DBA}\)
- Xét \(\Delta DBE\)và \(\Delta DBA\)
BD chung
\(\widehat{DBC}=\widehat{DBA}\)
BE = BA (câu b)
=> \(\Delta DBE\)= \(\Delta DBA\)(c.g.c)
=> \(\widehat{BAD}=\widehat{BED}\)
Lại có \(\Delta ABC\)vuông tại A
=> \(\widehat{BAD}=90^o\)
=> \(\widehat{BED}=90^o\)
=> \(\Delta BED\)vuông tại E (đpcm)