K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔBHA vuông tại H và ΔBHE vuông tại H có 

BH chung

\(\widehat{ABH}=\widehat{EBH}\)(BH là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔBHA=ΔBHE(cạnh góc vuông-góc nhọn kề)

b) Ta có: ΔBHA=ΔBHE(cmt)

nên BA=BE(hai cạnh tương ứng)

Xét ΔBAD và ΔBED có 

BA=BE(cmt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔBAD=ΔBED(c-g-c)

Suy ra: \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

hay DE\(\perp\)BC(đpcm)

15 tháng 12 2017

Bạn xem lời giải bài tương tự tại đường link dưới nhé:

Câu hỏi của Nguyễn Ngọc Vy - Toán lớp 7 - Học toán với OnlineMath

a) Sửa đề: Trên HC lấy E sao cho HE=HB và c/m ΔBHA=ΔEHA

Xét ΔBHA vuông tại H và ΔEHA vuông tại H có 

AH chung

BH=EH(gt)

Do đó: ΔBHA=ΔEHA(hai cạnh góc vuông)

KO SỬA ĐỀ ĐÂU BẠN ƠI

 

28 tháng 4 2017

A B C D H E K

aXét 2 tam giác BHA và tam giác BHE có:

H1=H2=90

B1=B2(phân giác góc B)

BH chung

=> tam giác BHA = tam giác BHE(g.c.g)

b Chứng minh AK // DE mà 

MÀ AK vuông góc vs BC

=> ED vuông góc vs BC

28 tháng 4 2017

câu c và d bạn

27 tháng 3 2020

a, Xét △BHA vuông tại H và △BHE vuông tại H

Có: BH là cạnh chung

       ABH = EBH (gt)

=> △BHA = △BHE (cgv-gn)

b, Vì △BHA = △BHE (cmt) => BA = BE (2 cạnh tương ứng)

Xét △BAD và △BED

Có: AB = BE (cmt)

    ABD = EBD (gt)

   BD là cạnh chung

=> △BAD = △BED (c.g.c)

=> BAD = BED (2 góc tương ứng)

Mà BAD = 90o

=> BED = 90o

=> DE ⊥ BE   

=> DE ⊥ BC

c, Vì △BAD = △BED (cmt) => AD = ED (2 cạnh tương ứng)

Xét △EDC vuông tại E có: DE < DC (cạnh góc vuông nhỏ hơn cạnh huyền)

=> AD < DC 

d, Ta có: AD = ED (cmt) => △ADE vuông tại D => DAE = DEA 

Vì AK ⊥ BC (gt) và DE ⊥ BC (cmt)

=> AK // DE (từ vuông góc đến song song) 

=> KAE = AED (2 góc so le trong)

mà DAE = DEA  (cmt)

=> KAE = DAE => KAE = CAE

Mà AE nằm giữa AK, AC

=> AE là phân giác CAK

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cma) Chứng tỏ tam giác ABC vuông tại A.b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC =...
Đọc tiếp

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm

a) Chứng tỏ tam giác ABC vuông tại A.

b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.

2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.

3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.

4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC

a) Chứng minh tam giác AHB = tam giác AHC

b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.

5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I

a) Chứng minh tam giác AIB = tam giác AIC

b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.

c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.

6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.

a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.

b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.

c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.

Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(

5
7 tháng 4 2020

Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)

8 tháng 4 2020

Do tam giác ABC có

AB = 3 , AC = 4 , BC = 5

Suy ra ta được

(3*3)+(4*4)=5*5  ( định lý pi ta go) 

9 + 16 = 25

Theo định lý py ta go thì tam giác abc vuông tại A

a: Xét ΔBAK có

BE là đường cao

BE là đường trung tuyến

Do đó: ΔBAK cân tại B

b: Xét ΔBAD và ΔBKD có

BA=BK

\(\widehat{ABD}=\widehat{KBD}\)

BD chung

Do đó: ΔBAD=ΔBKD

Suy ra: \(\widehat{BAD}=\widehat{BKD}=90^0\)