Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
b)
Ta Có
Bx//ÁC Và Cy//AB
=>Tứ giác ABMC là hình bình hành
má \(\widehat{A}\)=90
=>tứ giác ABMC là hình chữ nhật
a)E,K lần lượt là trung điểm AB,AC.
=>EK là đường trunug bình của ∆ABC
=>EK//BC
a) Xét ∆ABC có :
D là trung điểm AB
E là trung điểm BC
=> DE là đường trung bình ∆ABC
=> DE//AC , DE = \(\frac{1}{2}AC\)= \(\frac{16}{2}=8\)cm
Xét ∆ABC có :
E là trung điểm BC
F là trung điểm AC
=> FE là đường trung bình ∆ABC
=> FE//AB , FE = \(\frac{1}{2}AB=6cM\)
Xét tứ giác AFED có :
AD//EF ( AB//FE , D\(\in\)AB )
DE//FA ( DE//AC , F \(\in\)AC )
=> AFED là hình bình hành
Mà BAC = 90°
=> AFED là hình chữ nhật
=> DEF= EFA = FAD = ADE = 90°
Vì F là trung điểm AC
=> FA = FC = 8cm
Áp dụng định lý Py - ta -go vào ∆AEF ta có :
AE2 = FE2 + AF2
=> AE = 10cm
b) Xét ∆ABC ta có :
D là trung điểm AB
F là trung điểm AC
=> DF là đường trung bình ∆ABC
=> DF//BC
Xét tứ giác BEFD ta có :
BE//DF ( BC//DF , E \(\in\)BC )
BD//FE ( AB//FE , D\(\in\)AB )
=> BEFD là hình bình hành
c) Chứng minh trên
DE SAI