K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2019

Em tham khảo nhé! 

Câu hỏi của Vy Hà Khánh - Toán lớp 7 - Học toán với OnlineMath

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC

1
22 tháng 11 2019

1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath

27 tháng 3 2020

          HÌNH THÌ CẬU TỰ VẼ NHÉ!!

a.    xét hai tam giác vuông BEF và BAC có:

           BF=BC(tam giác BFC cân tại B)

           \(\widehat{FBC}\)\(chung\)

          \(\widehat{BEF}=\widehat{BAC}\)

=> Hai tam giác BEF= BAC ( cạnh huyền-góc nhọn)

=> BE=BA( 2 cạnh tương ứng)

b.  Xét hai tam giác vuông BDE và BDA có:

           BD chung

           BE=BA(cmt)

          \(\widehat{BED}=\widehat{BAD}\)

=> Hai tam giác BDE=BDA (cạnh huyền-góc nhọn)

=> \(\widehat{ABD}=\widehat{EBD}\)(2 góc tương ứng)     (1)

  mà tia BM nằm giữa hai tia BF và BC     (2)

Từ (1) và (2)=> BM là phân giác góc ABC

c.  Xét hai tam giác BMC và BMF có:

          BM chung

          MC=MF( M là trung điểm của FC)

         BF=BC( tam giác BFC cân tại B)

=> hai tam giác BMC=BMF( c.c.c)

=> \(\widehat{BMC}=\widehat{BMF}\)( 2 góc tương ứng)

mà \(\widehat{BMC}+\widehat{BMF}=180^o\)( 2 góc kề bù)

=> \(\widehat{BMC}=\widehat{BMF}=180^O:2=90^O\)

=>  \(BM\perp FC\) hay \(BM\perp AE\)( đpcm)

#chúc_cậu_học_tốt

Trên tia đối của tia MA, lấy điểm D sao cho MA=MD

Xét tứ giác ACDB có 

M là trung điểm của đường chéo BC

M là trung điểm của đường chéo AD

Do đó: ACDB là hình bình hành

Hình bình hành ACDB có \(\widehat{CAB}=90^0\)

nên ACDB là hình chữ nhật

Suy ra: BC=AD

mà \(AM=\dfrac{1}{2}AD\)

nên \(AM=\dfrac{1}{2}BC\)

24 tháng 8 2021

áp dụng tính chất đường trung tuyến của tam giác vuông

=> AN=1/2BC

24 tháng 8 2021

Bạn có cách làm nào khác ko

 

11 tháng 2 2018

      \(AM=\frac{1}{2}BC\)

\(\Rightarrow\)\(AM=MB=MC\)

   \(\Delta MBA\)cân  tại   \(M\)  

\(\Rightarrow\)\(\widehat{MAB}=\widehat{B}\)     (1)

   \(\Delta MAC\) cân  tại   \(M\)

\(\Rightarrow\)\(\widehat{MAC}=\widehat{C}\)   (2)

Lấy   (1) + (2)  theo vế ta được:

           \(\widehat{MAB}+\widehat{MAC}=\widehat{B}+\widehat{C}\)

 \(\Leftrightarrow\)\(\widehat{BAC}=\widehat{B}+\widehat{C}\)

\(\Delta ABC\)  có:     \(\widehat{BAC}+\widehat{B}+\widehat{C}=180^0\)

\(\Rightarrow\)\(\widehat{BAC}=90^0\)

Vậy   \(\Delta ABC\)\(\perp\)\(A\)

11 tháng 2 2018

      AM=12 BC

AM=MB=MC

   ΔMBAcân  tại   M  

^MAB=^B     (1)

   ΔMAC cân  tại   M

^MAC=^C   (2)

Lấy   (1) + (2)  theo vế ta được:

           ^MAB+^MAC=^B+^C

 ^BAC=^B+^C

ΔABC  có:     ^BAC+^B+^C=1800

^BAC=900

Vậy   ΔABCA

a: Xét ΔAHD và ΔAID có

AH=AI

góc HAD=góc IAD

AD chung

=>ΔAHD=ΔAID

=>góc HAD=góc IAD

=>AD là phân giác của góc HAC

b: ΔAHD=ΔAID

=>góc AID=góc AHD=90 độ

Xét ΔDHM vuông tại H và ΔDIC vuông tại I có

DH=DI

góc HDM=góc IDC

=>ΔDHM=ΔDIC

=>MD=MC

c: AH+HM=AM

AI+IC=AC

mà AH=AI và HM=IC

nên AM=AC

=>ΔAMC cân tại A

mà AN là trung tuyến

nên AN vuông góc MC

Xét ΔCAM có

AN,MI,CH là đường cao

=>AN,MI,CH đồng quy

=>AN,MI,BC đồng quy

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng:a) AM=IKb) Tam giác AMI bằng tam giác IKCc) AI=ICBài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IAa) CMR tam giác BID bằng tam giác CIAb) CMR : BD vuông góc với ABc) Qua A kẻ đường thẳng song song với BC cắt đường...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng:

a) AM=IK

b) Tam giác AMI bằng tam giác IKC

c) AI=IC

Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA

a) CMR tam giác BID bằng tam giác CIA

b) CMR : BD vuông góc với AB

c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC

d) CMR: AB là tia phân giác cuả góc DAM

Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC

a) C/M: tam giác AKB bằng tam giác AKC

b) C/M: AK vuông góc với BC

c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK

Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR

a) BD= CE

b) tam giác OEB bằng tam giác ODC

c) AO là tia phân giác cua góc BAC

 

3
21 tháng 2 2017

la sao eo hieu anh oi em moi lop 5 anh lop 7 saoe lam dc ha troi,voi lai bai do cau hoi giong em nhung bai em la tim ti so % cua AI va IC anh lam dc ko giai giup em voi anh.Anh ko giai dc xung dang lam gi la lop 7 ha anh,em noi co dung ko????EM NOI VAY LA DUNG CHINH XAC,DUNG CCMNR!!!!!!!!!!!!:))))))

6 tháng 12 2017

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng:

a) AM=IK

b) Tam giác AMI bằng tam giác IKC

c) AI=IC

Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR

a) BD= CE

b) tam giác OEB bằng tam giác ODC

c) AO là tia phân giác cua góc BAC

Được cập nhật 41 giây trước (20:12)