Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Áp dụng hệ thức giữa cạnh và đường cao trong các tam giác vuông
∆AHC và ∆AHB ta có:
AE.AC = A H 2 = AD.AB => ∆AHC ~ ∆AHB(c.g.c)
b. Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ∆ABC tính được AH = 3cm => DE = 3cm
Trong ∆AHB vuông ta có:
tan A B C ^ = A H H B => A B C ^ ≈ 56 0 , S A D E = 27 13 c m 2
Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC
=> AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.
Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago) mà BN=9cm (gt)
=>AN2+AB2=81 Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81 (1)
Tam giác ABC vuông tại A có: AC2+AB2=BC2 => BC2 - AB2 = AC2 (2)
Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC2 - AB2)+AB2=81 mà BC=12(cmt)
=> 36 - \(\frac{1}{4}\)AB2+AB2=81
=> 36+\(\frac{3}{4}\)AB2=81
=> AB2=60=>AB=\(\sqrt{60}\)
C2
Cho hình thang cân ABCD có đáy lớn CD = 1
C4
Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath
a, Xét ΔABH và ΔAHD có
Góc A chung
Góc ADH=Góc AHB=90°
=> ΔABH ~ΔAHD(g.g)
=> AH/AB=AD/AH
=> AB.AD=AH²(1)
Xét ΔAEH và ΔAHC có:
Góc A chung
Góc AEH = góc AHC
=>ΔAEH~ΔAHC(g.g)
=> AE/AH=AH/AC
=>AE.AC=AH²(2)
Từ (1);(2) => AD.AB=AE.AC(đpcm)
b, vì ΔABC vuông tại A có AI là trung tuyến ứng với cạnh huyền=> BI=IC=AI
=> ΔAIC cân tại I
=>góc IAC =góc ICA
Ta cũng có ΔBIA cân tại I =>góc IBA=góc BAI
Mà góc BAI =góc AED(cùng phụ)
=> góc IBA=góc AED
Mà ABI+góc ACI= 90°
=> gócAED + góc IAC=90°
=> DEvuông góc vs AI
c,
mình làm câu c,d nek bạn
c, ta có\(\Delta\)HEC vuông tại E( vì E là hình chiếu của H nên Góc E=90 độ)
=> EN là đường trung tuyến ứng vs cạnh huyền
=> EN=NH=NC( vì N là trung điểm của HC)
=> \(\Delta\)ENC cân tại N(NE=NC cmt)
=> góc NEC=góc NCE(hai góc đáy) (1)
chứng minh tương tự trong \(\Delta\)BMD cân tại M
=> góc DBM=góc MDB(2)
ta có \(\Delta\)ABC vuông tại A nên góc DBM+góc NCE=90 độ
=>góc MDB+ góc NEC(vì (1);(2)) (3)
và \(\Delta\)\(\Delta\)
DAE vuông tại A nên góc ADE+góc AED=90 độ (4)
từ (3);(4)=>góc BDM+góc ADE=90 độ
=> góc MDH+góc HDE=90 độ ( 180 độ - (MDH+HDE))
=> DM\(\perp\) DE (*)
và góc DEA+ góc NEC=90 độ
=> góc HDE+góc HEN= 90 độ
=> DE\(\perp\) EN (**)
từ (*); (**)=> MDEN là hình thang (DM // EN vì cùng \(\perp\)vs DE)
d, Ta có DHEA là hình chữ nhật (góc D= góc H =Góc E=90 độ)
=> OH=OA=OD=OE (t/c đường chéo hcn)
=> OH=OA=HA/2
ta có HM+HN=BM+NC(vì BM=MH; NH=NC)
=> MH+HN=BC/2=>MN=1/2 BC
diện tích \(\Delta\)ABC =1/2. AH. BC
diện tích \(\Delta\)MON=1/2.OH.MN=1/2.1/2AH.1/2BC
Vậy (S\(\Delta\) MON)/(S\(\Delta\)ABC)=(1/2.AH.BC)/(1/8 AH.BC)
=4
Mình nghĩ là làm như vậy, có gì bạn góp ý nha
Cho tam giác ABC vuông tại A,phân giác AD
a,CM √2AD =1AB +1AC
b, Gọi I là giao điểm các đường phân giác của tam giác ABC, biết IB=√5,IC=√10. Tính diện tích tam giác ABC
a) Đặt AB = c; AC = b; AD = d.
Áp dụng công thức tính diện tích tam giác bằng ½ tích hai cạnh nhân sin góc xen giữa ta có:
S ABD = ½.AB.AD.sin BAD = ½.cd.sin 45º = ½cd.1/√2
Tương tự: S ACD = ½bd.1/√2
=> S ABC = S ABD + S ACD = ½cd.1/√2 + ½bd.1/√2 = ½d(b + c)/√2
mà S ABC = ½bc
=> ½d(b + c)/√2 = ½bc
=> (b + c)/bc = √2/d
<=> 1/b + 1/c = √2/d
b,Kẻ CH ⊥ BI và CH cắt BA tại K. Tam giác BCK có BH vừa là phân giác vừa là đường cao Tam giác BCK cân tại B => BH là đường trung tuyến => CH = KH. và KC = 2HC.
Đặt BC = x Ta có: AD = BK - AB = BC - AB = x - AB
Gọi giao điểm của AC và BH là E.
Xét tam giác AEB và tam giác HEC có góc EAB = góc EHC = 90độ và góc AEB = góc HEC (đối đỉnh)
tam giác AEB ~ tam giác HEC(g.g)
Góc HCE = góc ABE.
Góc HCE = góc ABC/2 (1)
Mà Góc ECI = gócACB/2 (2)
Từ (1) và (2) Góc ICH = Góc HCE + Góc ECI = (gócABC + góc ACB)/2 = 90độ/2 = 45độ.
Xét tam giác HIC có góc IHC = 90độ và Góc ICH = 45 độ (góc còn lại chắc chắn = 45 độ)
tam giác HIC vuông cân tại H => HI = HC.
Áp dụng đinh lý Py-ta-go cho tam giác này ta được: 2HI² = IC²
√2.IH = IC hay CH = IC/√2.
CH =HI=√10 /√2
Suy ra BH=HI+IB=√10 /√2+√5
=>BC=√((√10 /√2+√5)²+(√10 /√2)²)
KC = 2CH = 2.√10/√2
Xét tam giác: AKC có góc KAC = 90độ và Áp dụng định lý Py-ta-go ta có: KC² = AK² + AC²
AC² = KC² - AK² hay AC² = (2.√10/√2)² - (x - AB)² (3)
Tương tự đối với tam giác ABC ta có: AC² = BC² - AB² AC² = x² - AB² (4)
Từ (3) và (4) suy ra (2.√10/√2)² - (x - AB)² = x² - AB²
20 - (x² - 2ABx +AB²) = x² - AB²
=>10=x(x-AB)
sau đó tính AB rồi tính AC And S ABC