K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AEBF có 

D là trung điểm của AB

D là trung điểm của EF
Do đó: AEBF là hình bình hành

b: Xét tứ giác ABFO có 

AO//BF

AO=BF

Do đó: ABFO là hình bình hành

mà \(\widehat{BAO}=90^0\)

nên ABFO là hình chữ nhật

a: Xét tứ giác ABKC có

M là trung điểm chung của AK và BC

AB=AC
Do đó: ABKC là hình thoi

b: Để ABKC là hình vuông thì góc BAC=90 độ

c: Xét tứ giác ABCD có

AB//CD

AD//BC

=>ABCD là hình bình hành

=>AD=BC

30 tháng 12 2017

a) Ta có AD = 1 2 B C = 8 2 = 4 c m  

Xét  DADC có GF là đường trung bình

⇒   G F = 1 2 A D = 4 2 = 2 c m  

b) Chứng minh ADCE là hình thoi. Để ADCE là hình vuông thì điều kiện cần và đủ là E C D ^ = 90 0 ⇔ C 1 ^ = C 2 ^ = 45 0  

Û DABC vuông tại A.

23 tháng 2 2021

(x-5) (x-7)=0

18 tháng 12 2017

câu b là phải chứng minh ADBC là hình bình hành chứ nhỉ . Sao lại có hình bình hành ABDC được?