Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo :
Câu hỏi của nguyen thi thom - Toán lớp 7 - Học toán với OnlineMath
Học tốt!!!
Câu hỏi của Chi Chi - Toán lớp 7 - Học toán với OnlineMath
Tham khảo tại link trên.
a) Xét \(\Delta EAB\)và \(\Delta DAC\)có:
\(AE=AD\)(gt)
\(\widehat{EAB}=\widehat{DAC}\)(đối đỉnh)
\(AB=AC\)(Do tam giác ABC cân tại A)
Suy ra \(\Delta EAB=\Delta DAC\left(c.g.c\right)\)
\(\Rightarrow BE=CD\)(hai cạnh tương ứng)
Bài 5:
Tgiac ABC vuông cân tại A => góc CBA = 45 độ
Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB
Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC
=> góc D = 45/2 = 22,5 độ
và góc ACD = 22,5 + 45 = 67,5 độ
Vậy số đo các góc của tgiac ACD là ...
Bài 6:
Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ
Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ
cmtt với tgiac CBE => góc DEB = 70 độ
=> góc DBE = 180-70-70 = 40 độ
Bài 7:
Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)
Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C
=> đpcm
Bài 8: mai làm hihi
a) Xét tam giác ABD và tam giác ACD:
AD chung.
AB = AC (gt).
BD = CD (D là trung điểm của BC).
\(\Rightarrow\Delta ABD=\Delta ACD\left(c-c-c\right).\)
b) Xét tam giác ABC: AB = AC (gt).
\(\Rightarrow\Delta ABC\) cân tại A.
Mà AD là trung tuyến (D là trung điểm của BC).
\(\Rightarrow\) AD là phân giác \(\widehat{BAC}\) (Tính chất tam giác cân).
Xét tam giác MAD và tam giác NAD:
AD chung.
AM = AN (gt).
\(\widehat{MAD}=\widehat{NAD}\) (AD là phân giác \(\widehat{BAC}\)).
\(\Rightarrow\Delta MAD=\Delta NAD\left(c-g-c\right).\)
\(\Rightarrow\) DM = DN (2 cạnh tương ứng).
c) Xét tam giác ADC và tam giác EDB:
DC = DB (D là trung điểm của BC).
AD = ED (gt).
\(\widehat{ADC}=\widehat{EDB}\) (Đối đỉnh).
\(\Rightarrow\Delta ADC=\Delta EDB\left(c-g-c\right).\)
\(\Rightarrow\widehat{CAD}=\widehat{BED}\) (2 góc tương ứng).
\(\Rightarrow\) AC // BE.
Mà \(DK\perp BE\left(gt\right).\)
\(\Rightarrow\) \(DK\perp AC.\left(1\right)\)
Ta có: \(\widehat{AMD}=\widehat{AND}\) \(\left(\Delta MAD=\Delta NAD\right).\)
Mà \(\widehat{AMD}=90^o\left(AM\perp MD\right).\)
\(\Rightarrow\widehat{AND}=90^o.\Rightarrow AC\perp ND.\left(2\right)\)
Từ (1); (2) \(\Rightarrow N;D;K\) thẳng hàng.
bạn chờ mik ghi bài làm nhé
a)xét \(\Delta\)ACD và \(\Delta\)EBD có;
DE=DA(gt)
BD=BC(D là trung điểm BC)
góc BDE=góc ADC(đối đỉnh)
nên \(\Delta\)ACD=\(\Delta\)EBD(c.g.c)
b)ta có:\(\Delta\)ACD=\(\Delta\)EBD(cmt)
nên góc DBE=góc DCA
mà 2 góc này ở vị trí so le trong
nên BE//AC
mà AC vuông góc với AB(\(\Delta\)ABC vuông tại A)
nên AB vuông với BE