Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) cm tam giac ABD= tam giac BHD ( ch-gn)==> AD=HD
b)cm tam giac ADK= tam giac DHC ( g=c=g)
AD=HD ( cmt) goc DAK=goc DHC (=90) goc ADK= goc HDC ( 2 goc doi dinh )
--> AK= HC
ta co: BA=BH ( tam giac ABD= tam giac BHD)
AK=HC ( cmt)
--> BA+AK- BH+HC--> BK=BC=> tam giac KBC can tai B
ma BD la tia phan giac ( gt) nen BD la duong cao)==> BD vuong goc KC
Neu truong k cho xai thi.goi Hla giao diem BD va CK cm tam giac KBH= tam giac CBH ( c=g=c)
--> goc BHK= goc BHC
ma goc BHK+ goc BHC=180 ( 2 goc ke bu)
nen BHK+BHK=180
-> 2 BHK=180-> BHK =180:2=90-> dpcm
c) xet tam goac DKC ta co : DK = DC ( tam giac ADK= tam giac DHC)
--> tam giac DKC can tai D -> dpcm
a, Theo t/c của đường phân giác: Bất cứ điểm nào nằm trên đường phân giác thì cách đều 2 cạnh kề của đường thẳng ấy
=> AD=HD(đpcm)
b, Ta thấy tam giác ADK = tam giác DHC
=>AK=HC(2 cạnh tuong ứng)
=>BK=BC
=> tam giác BKC là tam giác cân
Suy ra BD cũng là đường cao , trung trực
Vậy BD vuông góc với KC (đpcm)
c, BD cắt KC tai M
Xét tam giác DMK ( M=90)và tam giác DMC(M=90)
CÓ: DM chung
DMK=DMC(=90)
KM=MC
Suy ra tam giác DMK=tam giác DMC(ch.gn)
=>DKC=DCK(đpcm)
Cho tam giác ABC vuông tại A, BD là tia phân giác của góc B ( d thuộc AC). Kẻ DEvuông gócBC ( E thuộc BC). Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:
a) BD là đường trung trực của AF
b) AD < BC
c) Ba điểm E, D, F thẳng hàng
E C B A D I
A)Xét tam giác ADB và tam giác AEC có
\(\widehat{AEC}=\widehat{ADB=90}^0\left(GT\right)\)
\(AB=AC\left(GT\right)\)
\(\widehat{A}chung\)
Từ ba điều trên => tam giác ABD= tam giác AEC( G.C.G)
=> BD=CE( 2 CẠNH T/Ư)
B) Xét tam giác AED, có: \(AE=AD\)(tam giác ADB= tam giác AEC)
=> Tam giác AED là tam giác cân
C) câu c) mk chư bt lm
c ) +)Xét tam giác AEI và tam giác ADI có :
\(\widehat{E}=\widehat{D}\left(=90\right)^o\)
AE = AD ( cmt )
AI chung
=> Tam giác AEI = Tam giác ADI ( ch - cgv)
=> Góc DAI = Góc EAI ( hai góc tương ứng )
Mà AI nằm giữa AB và AC nên AI là đường phân giác của góc BAC( ĐPCM )
+) Gọi điểm H là giao của BC và AI .
Xét tam giác ABC có :
BD là đường cao thứ nhất
CE là đường cao thứ hai
=> AH phải là đường cao thứ ba (t/c đường cao trong tam giác )
=> \(Ah⊥BC\)
Mà I thuộc AH => \(AI⊥BC\)
Câu c:
Ta có: tam giác ABE = tam giác KBE (cmt)
=> AE = KE (2 cạnh tương ứng), mà E thuộc AK (gt)
=> E là trung điểm của AK (t/c)
Mà BE vuông góc với AK tại E (gt)
=> BE là đường trung trực của đoạn AK (t/c)
Có D thuộc BE => ED là đường trung trực của AK
=> AD = KD
=> tam giác ADK cân tại D (dhnb)
=> góc KAD = góc AKD (t/c) (1)
Có AH vuông góc với BC tại H (giả thiết)
DK vuông góc với BC tại K (cmt)
Từ 2 điều đó => AH // DK (do cùng vuông góc với BC)
=> góc HAK = góc AKD (2 góc so le trong) (2)
Từ (1) và (2) => góc KAD = góc HAK (cùng = góc AKD)
mà tia AK nằm giữa 2 tia AH và AD
=> AK là tia phân giác góc HAC
Câu d:
Có AH cắt BD tại I (gt) => I thuộc BD
=> I thuộc trung trực của AK
=> IA = IK (t/c)
=> Tam giác IAK cân tại I (dhnb)
=> góc IAK = góc IKA
mà góc IAK = góc KAD (cmt)
=> góc IKA = góc KAD (= góc IAK)
mà góc IKA và góc KAD nằm ở vị trí so le trong
=> IK // AC (dhnb 2 đường thẳng //)
4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha
*In đậm: quan trọng.
Vì BD là tia phân giác \(\widehat{ABC}\)
=> BD nằm giữa BA và BC
=> điểm D nằm giữa A và C hay AD < AC
AC là hình chiếu của đường xiên BC
AD là hình chiếu của đường xiên BD
mà AD < AC
=> BC < BD