K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2022

k dấu khó đọc quá

Xét tứ giác ABDC có

M là trung điểm của BC

M là trung điểm của AD
Do đó: ABDC là hình bình hành

mà \(\widehat{CAB}=90^0\)

nên ABDC là hình chữ nhật

hay \(\widehat{ABD}=90^0\)

10 tháng 5 2019

A B C M D

a. Xét ΔAMC và ΔBMD, ta có:  

BM = MC (gt)

\(\widehat{AMB}=\widehat{BMC}\)  (2 góc đối đỉnh)

AM = MD (gt)

Suy ra: ΔAMC = ΔDMB (c.g.c)

\(\widehat{MAC}=\widehat{D}\) (2 góc tương ứng)

Suy ra: AC // BD

(vì có 2 góc ở vị trí so le trong bằng nhau)

Mà AB ⊥ AC (gt) nên AB ⊥ BD.

\(\Rightarrow\widehat{ABD}\) = 90 độ 

Vì  ΔAMC =  ΔDMB (câu a) 

=> AC = BD 

Xét  ΔABC và  ΔBAD có : 

\(\widehat{BAC}=\widehat{ABD}=90^o\left(gt\right)\)

AB là cạnh chung 

AC = BD (cmt) 

=>  ΔABC =  ΔBAD (c.g.c) 

8 tháng 2 2017

mk giải sau nhé 

3 tháng 5 2016

a/ Áp dụng định lí Pytago vào tam giác vuông ABC ta được:

BC^2=AB^2+AC^2=3^2+4^2=5^2

=> BC=5 cm

3 tháng 5 2016

b)c/m tam giác BAM= tam giác CDM=><ABC=<DCB mà 2 góc này là 2 góc so le trong=>AB//DC

VÌ tam giác BAM= tam giác CDM=> AB=CD

21 tháng 3 2020

XÉT \(\Delta ABC\)CÂN TẠI A

\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)

TA CÓ \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\left(Đ/L\right)\)

THAY\(50^0+\widehat{B}+\widehat{C}=180^o\)

                      \(\widehat{B}+\widehat{C}=130^o\)

\(\widehat{B}=\widehat{C}\)

\(\Rightarrow\widehat{B}=\widehat{C}=\frac{130^o}{2}=65^o\)

TA CÓ \(\widehat{DBA}+\widehat{ABC}=180^o\left(KB\right)\)

\(\Rightarrow\widehat{DBA}=180^o-65^o=115^o\)

TA CÓ\(\widehat{ACE}+\widehat{ACB}=180^o\left(KB\right)\)

\(\Rightarrow\widehat{ACE}=180^o-65^0=115^o\)

XÉT \(\Delta ACE\)CÓ AC=CE (GT) =>\(\Delta ACE\)CÂN TẠI C 

\(\Rightarrow\widehat{CAE}=\widehat{AEC}=\frac{180^o-115^0}{2}=32,5^0\)

XÉT \(\Delta ABD\)CÓ AB=BD (GT) =>\(\Delta ABD\)CÂN TẠI B

\(\Rightarrow\widehat{DAB}=\widehat{ADB}=\frac{180^o-115^0}{2}=32,5^0\)

TA CÓ\(\widehat{DAB}+\widehat{BAC}+\widehat{EAC}=\widehat{DAE}\)

THAY\(32,5^o+50^0+32,5^0=\widehat{DAE}\)

       \(\Rightarrow\widehat{DAE}=115^0\)