Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
Do đo: ΔABD=ΔAED
Suy ra: DB=DE
b:Ta có: AB=AE
DB=DE
Do đó: AD là đường trung trực của BE
F A D E B C
a) Xét tam giác ABR và tam giác ABD có :
AE=AD ( gt )
AB chung
=> Tam giác ABE =Tam giác ABD ( 2 cạnh góc vuông )
=> BD = BE ( đpcm )
b) Ta có : DI là t2 BC
=> DB = DC => góc DBC = góc DCB
=> góc BDE = góc DBC + góc DCB = 2. góc DCB
Mà góc BDE = góc BEC ( sao cho BDE cân )
=> góc BEC = 2. góc ECB
c) Ta có : góc AIB = góc IAC + góc ICA
mà I là trung điểm BC
=> IA = IB = IC => tam giác IAC cân tại I
=> góc C1 = góc A1 => góc AIB =2. góc C1
=> góc AIB = góc AEC
=> tam giác EIB \(\infty\)tam giác CEB ( góc B chung ; góc E = góc I )
=> góc BFI = góc BCE hay góc A1 = góc BFI
mà góc A1 =góc A2 => góc BFI = góc A2
=> tam giác EFA cân tại E
=> tam giác AEF cân ( đpcm )
a là j bạn