Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(S_{ABD}=\frac{1}{2}AB.AD.sin\widehat{BAD}=AB.AD.\frac{\sqrt{2}}{4}\)
\(S_{ACD}=\frac{1}{2}AC.AD.sin\widehat{CAD}=AC.AD.\frac{\sqrt{2}}{4}\)
\(S_{ABC}=\frac{1}{2}AB.AC\)
Suy ra : \(S_{ABC}=S_{ABD}+S_{ACD}\Leftrightarrow\frac{1}{2}AB.AC=\frac{\sqrt{2}}{4}AD.\left(AB+AC\right)\Rightarrow\frac{1}{AB}+\frac{1}{AC}=\frac{\sqrt{2}}{AD}\)
b/ Tương tự
Kẻ \(AH\perp BC\) tại H
Áp dụng hệ thức lượng trong tam giác vuông BAC có:
\(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AH^2}\)
Do AD và AE lần lượt là hai tia phân giác trong và ngoài tại đỉnh A
\(\Rightarrow AD\perp AE\)
Áp dụng hệ thức lượng vào tam giác vuông AED có:
\(\dfrac{1}{AE^2}+\dfrac{1}{AD^2}=\dfrac{1}{AH^2}\) (AH là đường cao của tam giác AED do \(AH\perp BC\) hay \(AH\perp ED\))
\(\Rightarrow\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AE^2}+\dfrac{1}{DA^2}\)
Vậy...
a,áp dụng định lí pytago ta có bc^2=ab^2+ac^2
bc^2=15^2+20^2
bc=25
Ta có : SABC=SDAB+SDAC
12AB.AC=12AB.AD.sin45o+12AC.AD.sin45o=12AD.sin45o(AB+AC)
Ta thấy ngay \(\Delta ADI=\Delta AEI\) (Cạnh góc vuông và góc nhọn kề)
nên DI = EI.
Xét tam giác vuông AID, ta có \(\widehat{DAI}+\widehat{ADI}=90^o\)
Lại có \(\widehat{ADI}\) là góc ngoài tam giác DIB nên \(\widehat{ADI}=\widehat{ABI}+\widehat{DIB}\)
Vậy thì \(\widehat{DAI}+\widehat{ABI}+\widehat{DIB}=90^o\) (1)
Do AI, BI, CI là các tia phân giác nên \(\widehat{DAI}+\widehat{ABI}+\widehat{BCI}=\frac{\widehat{BAC}+\widehat{ABC}+\widehat{ACB}}{2}=\frac{180^o}{2}=90^o\) (2)
Từ (1) và (2) suy ra \(\widehat{DIB}=\widehat{ICB}\)
Vậy thì \(\Delta DIB\sim\Delta ICB\left(g-g\right)\Rightarrow\frac{DB}{IB}=\frac{DI}{IC}\Rightarrow DB=\frac{IB.DI}{IC}\)
Hoàn toàn tương tự \(\Delta IEC\sim\Delta BIC\left(g-g\right)\Rightarrow\frac{IE}{BI}=\frac{EC}{IC}\Rightarrow EC=\frac{IC.IE}{IB}\)
Vậy thì \(\frac{BD}{EC}=\frac{IB.DI}{IC}:\frac{IC.IE}{IB}=\frac{IB.DI}{IC}.\frac{IB}{IC.IE}=\left(\frac{IB}{IC}\right)^2\)