K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2016

A B D C E

a/ \(S_{ABD}=\frac{1}{2}AB.AD.sin\widehat{BAD}=AB.AD.\frac{\sqrt{2}}{4}\)

\(S_{ACD}=\frac{1}{2}AC.AD.sin\widehat{CAD}=AC.AD.\frac{\sqrt{2}}{4}\)

\(S_{ABC}=\frac{1}{2}AB.AC\)

Suy ra : \(S_{ABC}=S_{ABD}+S_{ACD}\Leftrightarrow\frac{1}{2}AB.AC=\frac{\sqrt{2}}{4}AD.\left(AB+AC\right)\Rightarrow\frac{1}{AB}+\frac{1}{AC}=\frac{\sqrt{2}}{AD}\)

b/ Tương tự 

23 tháng 6 2021

Kẻ \(AH\perp BC\) tại H

Áp dụng hệ thức lượng trong tam giác vuông BAC có:
\(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AH^2}\)

Do AD và AE lần lượt là hai tia phân giác trong và ngoài tại đỉnh A

\(\Rightarrow AD\perp AE\)

Áp dụng hệ thức lượng vào tam giác vuông AED có:

\(\dfrac{1}{AE^2}+\dfrac{1}{AD^2}=\dfrac{1}{AH^2}\) (AH là đường cao của tam giác AED do \(AH\perp BC\) hay \(AH\perp ED\))

\(\Rightarrow\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AE^2}+\dfrac{1}{DA^2}\)

Vậy...

6 tháng 10 2019

a,áp dụng định lí pytago ta có bc^2=ab^2+ac^2

bc^2=15^2+20^2

bc=25

27 tháng 8 2019

ABCD

Ta có : SABC=SDAB+SDAC

12AB.AC=12AB.AD.sin45o+12AC.AD.sin45o=12AD.sin45o(AB+AC)

22 tháng 9 2017

Hình tam giác t1: Polygon A, B, C Đoạn thẳng c: Đoạn thẳng [A, B] Đoạn thẳng a: Đoạn thẳng [B, C] Đoạn thẳng b: Đoạn thẳng [C, A] Đoạn thẳng j: Đoạn thẳng [I, A] Đoạn thẳng l: Đoạn thẳng [D, E] Đoạn thẳng m: Đoạn thẳng [B, I] Đoạn thẳng n: Đoạn thẳng [C, I] A = (-1.2, 6.4) A = (-1.2, 6.4) A = (-1.2, 6.4) B = (-3.32, 0.66) B = (-3.32, 0.66) B = (-3.32, 0.66) C = (6.02, 0.82) C = (6.02, 0.82) C = (6.02, 0.82) Điểm I: Giao điểm đường của g, i Điểm I: Giao điểm đường của g, i Điểm I: Giao điểm đường của g, i Điểm E: Giao điểm đường của k, b Điểm E: Giao điểm đường của k, b Điểm E: Giao điểm đường của k, b Điểm D: Giao điểm đường của k, c Điểm D: Giao điểm đường của k, c Điểm D: Giao điểm đường của k, c

Ta thấy ngay \(\Delta ADI=\Delta AEI\) (Cạnh góc vuông và góc nhọn kề)

nên DI = EI.

Xét tam giác vuông AID, ta có \(\widehat{DAI}+\widehat{ADI}=90^o\)

Lại có \(\widehat{ADI}\) là góc ngoài tam giác DIB nên \(\widehat{ADI}=\widehat{ABI}+\widehat{DIB}\)

Vậy thì \(\widehat{DAI}+\widehat{ABI}+\widehat{DIB}=90^o\) (1)

Do AI, BI, CI là các tia phân giác nên \(\widehat{DAI}+\widehat{ABI}+\widehat{BCI}=\frac{\widehat{BAC}+\widehat{ABC}+\widehat{ACB}}{2}=\frac{180^o}{2}=90^o\) (2)

Từ (1) và (2) suy ra \(\widehat{DIB}=\widehat{ICB}\)

Vậy thì \(\Delta DIB\sim\Delta ICB\left(g-g\right)\Rightarrow\frac{DB}{IB}=\frac{DI}{IC}\Rightarrow DB=\frac{IB.DI}{IC}\)

Hoàn toàn tương tự \(\Delta IEC\sim\Delta BIC\left(g-g\right)\Rightarrow\frac{IE}{BI}=\frac{EC}{IC}\Rightarrow EC=\frac{IC.IE}{IB}\)

Vậy thì \(\frac{BD}{EC}=\frac{IB.DI}{IC}:\frac{IC.IE}{IB}=\frac{IB.DI}{IC}.\frac{IB}{IC.IE}=\left(\frac{IB}{IC}\right)^2\)