Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét \(\Delta\) vuông AHD và \(\Delta\) AED. Có:
\(\widehat{A1}\)= \(\widehat{A2}\) ( giả thiết)
AD chung
=> \(\Delta AHD=\Delta AED\) ( ch-gn)
=> DH = DE ( 2 cạnh tương ứng )
b/ BMC không cân được bạn nhé. bạn chép nhầm đề bài r: Chứng minh DMC cân mới đúng.
Xét \(\Delta vuôngHDM\) và \(\Delta vuôngEDC\). Có:
\(\widehat{D1}\) = \(\widehat{D2}\) ( đối đỉnh)
HD = HE ( cmt)
=> \(\Delta HDM=\Delta EDC\left(cgv-gnk\right)\)
=> DM = DC ( 2 cạnh tương ứng)
=> Xét \(\Delta DMCcóDM=DC=>\Delta DMCcân\left(cântạiD\right)\)
~ Cậu ktra lại nhé~
4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha
*In đậm: quan trọng.
Sửa đề: cắt BA tại G, F là giao của GE với CA
a: Xét ΔCAG vuông tại A và ΔCEG vuông tại E có
CG chung
góc ACG=góc ECG
=>ΔCAG=ΔCEQ
b: Xét ΔAGF vuông tại A và ΔEGB vuông tại E có
GA=GE
góc AGF=góc EGB
=>ΔAGF=ΔEGB
c: CF=CA+AF
CB=CE+EB
mà CA=CE và AF=EB
nên CF=CB
=>ΔCBF cân tại C
a)DE vuông góc vs DC(gt)
=)DE<BD(Quan hệ giữa đường xiên và hình chiếu)
b)Xét tam giác BAD và tam giác BED,có:
BD là cạnh chung
góc ABD= góc EBD(BD là tia phân giác của góc ABE)
góc BAD = góc BED=90 độ
=) tam giác BAD=tam giác BED(g.c.g)
=)BA=BE(Hai cạnh tg ứng) (1)
=)AD=DE(Hai cạnh tg ứng)
Xét tam giác ADF và tam giác EDC,có:
AD=DE(CMT)
góc ADF=góc EDC(Hai góc đối đỉnh)
góc DAF=góc DEC=90 độ
=)tam giác ADF=tam giác EDC(g.c.g)
=)AF=EC(Hai cạnh tg ứng) (2)
Ta có: BF=AB+AF (3)
BC=EB+EC
Từ (1),(2),(3)=)BF=BC
Gọi giao điểm của BD và CF là K.
Xét tam giác BKF và tam giác BKC,có:
BF=BC(cmt)
góc FBK=góc CBK(BD là tia phân giác của góc ABC)
BK là cạnh chung
=)tam giác BKC=tam giác BKF(c.g.c)
=)góc BKC=góc BKF(Hai góc tg ứng)
Mà:góc BKC= góc BKF=180 độ(Hai góc kề bù)
=)góc BKC=góc BKF=180 độ/2=90 độ
=)BK vuông góc CF
Hay:BD vuông góc vs CF.
c)Tam giác BKF=tam giácBKC(c/m câu b)
=)góc BFK=gócBCK(Hai góc tg ứng) (1)
Ta có:góc FBC+góc BFK+góc BCK=180 độ
=)60 độ+góc BFK+góc BCK=180 độ
=)góc BFK= góc BCK=180 độ-60 độ=120 độ (2)
Từ (1) và (2)=)góc BFK=góc BCK=120 độ/2=60 độ
mà góc FBC=60 độ(gt)
=)Tam giác BCF là tam giác đều.