cho tam giác ABC vuông tại A, đường phân giác BE. Gọi H là hình chiếu của C trên B...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAE vuông tại A và ΔBKE vuông tại K có

BE chung

góc ABE=góc KBE

=>ΔBAE=ΔBKE

=>EA=EK

b: Xét ΔCED có

CH vừa là đường cao, vừa là trungtuyến

=>ΔCED cân tại C

=>góc CDE=góc CED

24 tháng 4 2023

giải nữa đi bạn

 

23 tháng 2 2021

theo mik thì đề này sai r :#

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )a,chứng minh rằng IA=IBb, Tính độ dài ICc, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IKBài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AEa, chứng minh rằng BE=CDb, chứng minh rằng góc ABE bằng góc ACDc, Gọi K là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )

a,chứng minh rằng IA=IB

b, Tính độ dài IC

c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK

Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE

a, chứng minh rằng BE=CD

b, chứng minh rằng góc ABE bằng góc ACD

c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?

Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:

a, AC=AK và AE vuông góc CK

b,KB=KA

c, EB > AC

d, ba đường AC,BD,KE cùng đi qua 1 điểm

Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:

a, tam giác ABE=tam giác ADC

b,góc BMC=120°

Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh

a,AK=KB

b, AD=BC

2
12 tháng 5 2019

C1 :

Hình : tự vẽ 

a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C

                                       mà CI vuông góc vs AB => CI là đường cao của tam giác ABC 

=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )

=> IA=IB (đpcm)

12 tháng 5 2019

C1 : 

b) Có IA=IB ( cm phần a ) 

mà IA+IB = AB 

      IA + IA = 12 (cm)

=> IA = \(\frac{12}{2}=6\left(cm\right)\)

Xét tam giác vuông CIA có :     CI2  +   IA2  = CA2  ( Đ/l Py-ta -go )

                                                   CI2 +  62     = 102

                                                          CI2       = 102  - 6= 64

=> CI = \(\sqrt{64}=8\left(cm\right)\)

Vậy CI ( hay IC ) = 8cm

7 tháng 3 2022

a, xét tam giác ABE và tam giác HBE có : BE chung

góc BAE = góc BHE = 90 do ...

góc ABE = góc HBE do BE là phân giác ...

=> tam giác ABE = tam giác HBE (ch - gn)

=> AE = EH

b, xét 2 tam giác vuông EAK và EHC có:

         EA=EH(theo câu a)

         ˆAEKAEK^=ˆHECHEC^(vì đối đỉnh)

=> t.giác EAK=t.giác EHC(cạnh góc vuông-góc nhọn)

=> EK=EC(2 cạnh tương ứng)

c, ta thấy E là trực tâm của tam giác CKB

=> BE⊥⊥CK

 

tham khảo

a, xét tam giác ABE và tam giác HBE có : BE chung

góc BAE = góc BHE = 90 do ...

góc ABE = góc HBE do BE là phân giác ...

=> tam giác ABE = tam giác HBE (ch - gn)

=> AE = EH

b, xét 2 tam giác vuông EAK và EHC có:

         EA=EH(theo câu a)

         ˆAEKAEK^=ˆHECHEC^(vì đối đỉnh)

=> t.giác EAK=t.giác EHC(cạnh góc vuông-góc nhọn)

=> EK=EC(2 cạnh tương ứng)

c, ta thấy E là trực tâm của tam giác CKB

=> BECK

a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

góc ABE=góc HBE

=>ΔBAE=ΔBHE

=>EA=EH

b: Xét ΔEAK vuông tại A và ΔEHC vuông tại H có

EA=EH

góc AEK=góc HEC

=>ΔEAK=ΔEHC

=>EK=EC

c: BK=BC

EK=EC

=>BE là trung trực của CK

=>BE vuông góc CK

a: góc C=90-60=30 độ

b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

BA=BH

=>ΔBAE=ΔBHE

=>góc ABE=góc HBE

=>BE là phân giác của góc ABC

c: Xét ΔEAK vuông tại A và ΔEHC vuông tại H có

EA=EH

góc AEK=góc HEC
=>ΔEAK=ΔEHC

=>EK=EC và AK=HC

mà BA=BH

nên BK=BC

mà EK=EC

nên BE là trung trực của KC

=>BE vuong góc KC