Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu c:
Ta có: tam giác ABE = tam giác KBE (cmt)
=> AE = KE (2 cạnh tương ứng), mà E thuộc AK (gt)
=> E là trung điểm của AK (t/c)
Mà BE vuông góc với AK tại E (gt)
=> BE là đường trung trực của đoạn AK (t/c)
Có D thuộc BE => ED là đường trung trực của AK
=> AD = KD
=> tam giác ADK cân tại D (dhnb)
=> góc KAD = góc AKD (t/c) (1)
Có AH vuông góc với BC tại H (giả thiết)
DK vuông góc với BC tại K (cmt)
Từ 2 điều đó => AH // DK (do cùng vuông góc với BC)
=> góc HAK = góc AKD (2 góc so le trong) (2)
Từ (1) và (2) => góc KAD = góc HAK (cùng = góc AKD)
mà tia AK nằm giữa 2 tia AH và AD
=> AK là tia phân giác góc HAC
Câu d:
Có AH cắt BD tại I (gt) => I thuộc BD
=> I thuộc trung trực của AK
=> IA = IK (t/c)
=> Tam giác IAK cân tại I (dhnb)
=> góc IAK = góc IKA
mà góc IAK = góc KAD (cmt)
=> góc IKA = góc KAD (= góc IAK)
mà góc IKA và góc KAD nằm ở vị trí so le trong
=> IK // AC (dhnb 2 đường thẳng //)
a) Vì AE là phân giác BAC
=> CAE = BAE
Xét ∆ vuông ACE và ∆ vuông AKE ta có :
AE chung
CAE = BAE
=> ∆ACE = ∆AKE (ch-gn)
=> AC = AK ( tương ứng )
=> ∆ACK cân tại A
Vì AE là phân giác BAC trong ∆ACK
=> AE là trung trực ∆ACK
=> AE \(\perp\)CK
xét tg ABD và tg HBD có:
\(\widehat{ABD}=\widehat{HBD}\)
\(\widehat{DAB}=\widehat{BHD}\left(=90\cdot\right)\)
chung BD
suy ra tg ABD = tg HBD ( ch-gn )
=) AB=BH
1)Tự vẽ hình nha.Mình ko biết vẽ trên học mãi:
a)Áp dụng định lí Pytago vào tam giác vuông ABC:
BC^2=AB^2+AC^2
Thay:
BC^2=6^2+8^2=36+48=100
=>BC=10.
b)Ta có:
BK(BD) là đường phân giác của góc B(1)
AE vuông góc với BK(BD)=>BK là đường vuông góc(2)
Từ (1) và (2):
=>ABK là tam giác cân(vì tam giác có đường phân giác đồng thời là đường cao là tam giác cân)
c)Vì KED vuông tại E(do AE vuông với BD)
E=90 độ =>góc EKD+góc KDE=90 độ
Áp dụng tính chất góc ngoài của tam giác bằng tổng hai góc trong không kề với nó:
=>góc DKC=góc EKD+góc KDE=90 độ
=>DK vuông góc với KC hay BD
(ko biết đúng hay sai nữa mình đag học lớp 8 nhớ lại vài cái không đúng thì sửa lại giùm nhé!!!!!!!)
d mk ko bk
A B C K D H E
Xét \(\Delta ABK\)có BE vừa là phân giác vừa là đường cao nên \(\Delta ABK\)cân tại B
\(\Rightarrow\)\(\widehat{BAK}=\widehat{BKA}\)
Ta có :
\(\widehat{BAK}+\widehat{KAC}=90^o\)( 1 )
\(\widehat{AKB}+\widehat{HAK}=90^o\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(\widehat{KAC}=\widehat{HAK}\)( cùng phụ với hai góc bằng nhau )
Từ đó suy ra : AK là tia phân giác của \(\widehat{HAC}\)