K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2017

Theo tính chất đường phân giác ta có:\(\frac{AB}{AC}=\frac{BD}{CD}=\frac{2}{3}\Rightarrow AB=\frac{2}{3}AC\)

Áp dụng định lí Pitago vào tam giác vuông ABC ta tính được;\(AC^2+AB^2=BC^2\Leftrightarrow\frac{4}{9}AC^2+AC^2=5^2\)

\(\Rightarrow AC=\frac{15\sqrt{13}}{13}cm;AB=\frac{10\sqrt{13}}{13}cm\)

Ta lại có \(\Delta FDC\)đồng dạng \(\Delta EBD\left(góc-góc\right)\)

\(\Rightarrow\frac{FD}{EB}=\frac{FC}{ED}=\frac{DC}{BD}=\frac{3}{2}\)

\(\Rightarrow EB=\frac{2}{3}FD;FC=\frac{3}{2}ED\)

Vì AD là tia phân giác của góc vuông=> Các Tam giác AED và AFD là tam giác vuông cân => Tứ giác AEDF là hình vuông.

Gọi cạnh hình vuông AEDF là x hay AE=AF=FD=ED=x

\(VìAE=AF\Rightarrow AB-EB=AC-FC\)

\(AB-\frac{2}{3}FD=AC-\frac{3}{2}ED\)

\(\frac{10\sqrt{13}}{13}-\frac{2}{3}x=\frac{15\sqrt{13}}{13}-\frac{3}{2}x\)

\(\frac{5x}{6}=\frac{5\sqrt{13}}{13}\Rightarrow x=\frac{6\sqrt{13}}{13}cm\)

diện tích hình tam giác ABC \(S_{\Delta ABC}=\frac{1}{2}AB.AC=\frac{75}{13}cm^2\)

diện tích hình vuông AEDF:\(S_{AEDF}=x^2=\frac{36}{13}cm^2\)

Tổng diện tích tam giác DEB và DFC\(S=\frac{75}{13}-\frac{36}{13}=3cm^2\)

A B C F E D

Hình mình vẽ chưa chính xác lắm, bạn vẽ lại nhe. chúc bạn học tốt

10 tháng 2 2017

Cảm ơn bạn Trường An nhiều nhé. Chúc bạn luôn may mắn, thành công.

1: Xét tứ giác AMDN có

góc AMD=góc AND=góc MAN=90 độ

AD là phan giác

=>AMDN là hình vuông

2: BC=căn 3^2+4^2=5cm

AD là phân giác

=>DB/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=5/7

=>BD=15/7cm; CD=20/7cm

a: \(BC=\sqrt{21^2+28^2}=35\left(cm\right)\)

AD là phân giác

=>DB/AB=DC/AC
=>DB/3=DC/4=(DB+DC)/(3+4)=35/7=5

=>DB=15cm; DC=20cm

b: Xét ΔCAB có DE//AB

nên DE/AB=CD/CB=CE/CA

=>CE/28=DE/21=20/35=4/7

=>CE=16cm; DE=12cm

2 tháng 4 2021

undefined

a: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC có AD là phân giác

nên \(\dfrac{DB}{AB}=\dfrac{DC}{AC}\)

=>\(\dfrac{DB}{4}=\dfrac{DC}{3}\)

mà DB+DC=10

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DB}{4}=\dfrac{DC}{3}=\dfrac{DB+DC}{4+3}=\dfrac{10}{7}\)

=>\(DB=4\cdot\dfrac{10}{7}=\dfrac{40}{7}\left(cm\right);DC=3\cdot\dfrac{10}{7}=\dfrac{30}{7}\left(cm\right)\)

b: Ta có: DE\(\perp\)AB

AC\(\perp\)AB

Do đó: DE//AC

Xét ΔABC có DE//AC

nên \(\dfrac{DE}{AC}=\dfrac{BD}{BC}\)

=>\(\dfrac{DE}{6}=\dfrac{40}{7}:10=\dfrac{4}{7}\)

=>DE=24/7(cm)

Ta có: \(\widehat{EDA}=\widehat{DAC}\)(hai góc so le trong, ED//AC)

\(\widehat{DAC}=\widehat{DAE}\)

Do đó: \(\widehat{EDA}=\widehat{EAD}\)

=>EA=ED=24/7(cm)

ΔAEC vuông tại A

=>\(AE^2+AC^2=EC^2\)

=>\(EC^2=\left(\dfrac{24}{7}\right)^2+6^2=\dfrac{2340}{49}\)

=>\(EC=\dfrac{6\sqrt{65}}{7}\left(cm\right)\)