Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Dễ dàng chứng minh \(BE.CF=HE.HF\)
Giờ ta chứng minh \(AH^3=BC.BE.CF\)
Ta có các hệ thức sau:\(\left\{{}\begin{matrix}BE=\dfrac{HB^2}{AB}\\CF=\dfrac{HC^2}{AC}\\AB.AC=AH.BC\\AH^2=HB.HC\end{matrix}\right.\)
\(\Rightarrow BC.BE.CF=BC.\dfrac{HB^2.HC^2}{AB.AC}=BC.\dfrac{AH^4}{AH.BC}=AH^3\)(đpcm)
b)Tìm max SAEF
Áp dụng hệ quả định lý thales:
\(\left\{{}\begin{matrix}\dfrac{HE}{AC}=\dfrac{BH}{BC}\\\dfrac{HF}{AB}=\dfrac{HC}{BC}\end{matrix}\right.\)\(\Rightarrow\dfrac{HE}{AC}+\dfrac{HF}{AB}=1\)
Áp dụng BĐT AM-GM:\(1=\dfrac{HE}{AC}+\dfrac{HF}{AB}\ge2\sqrt{\dfrac{HE.HF}{AB.AC}}\)
\(\Leftrightarrow1\ge2\sqrt{\dfrac{2S_{AEF}}{2S_{ABC}}}\)( vì \(HE.HF=AE.AF\))
\(\Leftrightarrow S_{ABC}\ge4S_{AEF}\) \(\Leftrightarrow S_{AEF}\le\dfrac{S_{ABC}}{4}\)
Dấu = xảy ra khi E và F lần lượt là trung điểm của AB,AC hay tam giác ABC vuông cân ở A.Khi đó AH= x= BC/2 =a
a, bc^2 = ab^2 +ac^2
<=.> (ae+eb)^2 +(af+fc)^2
<=.>AE^2 +2 AE.EB +EB^2 +AF^2+FC^2+2AF,FC
<=> EF^2 +EB^2 +CF^2 +2.(EH^2+FH^2)
<=>EB^2 +CF^2 + AH ^2 + 2 AH^2 vì tứ giác EHAF là hcn suy ra AH =EF
<=>EB^2 +CF^2+3 AH^2 (đpcm)
b, cb =2a là thế nào vậy
Xét ΔHAB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\)
Xét ΔHAC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\)
\(S_{AEF}=\dfrac{1}{16}\cdot S_{ABC}\)
=>\(\dfrac{1}{2}\cdot AE\cdot AF=\dfrac{1}{16}\cdot\dfrac{1}{2}\cdot AB\cdot AC\)
=>\(AE\cdot AF=\dfrac{1}{16}\cdot AB\cdot AC\)
=>\(\dfrac{AH^2}{AB}\cdot\dfrac{AH^2}{AC}=\dfrac{1}{16}\cdot AB\cdot AC\)
=>\(AH^4=\dfrac{1}{16}\cdot AB^2\cdot AC^2\)
=>\(AH^2=\dfrac{1}{4}\cdot AB\cdot AC=\dfrac{1}{4}\cdot AH\cdot BC\)
=>\(AH=\dfrac{1}{4}\cdot BC\)
Gọi M là trung điểm của BC
=>AH vuông góc HM tại H
ΔABC vuông tại A
mà AM là đường trung tuyến
nên \(AM=\dfrac{1}{2}BC\)=MB=MC
=>\(\dfrac{AH}{AM}=\dfrac{1}{2}\) và ΔMAC cân tại M
Xét ΔAHM vuông tại H có
\(sinAMH=\dfrac{AH}{AM}=\dfrac{1}{2}\)
=>\(\widehat{AMB}=30^0\)
=>\(\widehat{AMC}=150^0\)
ΔMAC cân tại M
=>\(\widehat{MCA}=\dfrac{180^0-\widehat{AMC}}{2}=15^0\)
=>\(\widehat{ACB}=15^0\)
Câu hỏi của Nguyễn Tấn Phát - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo!
a, Áp dụng HTL: \(BC=\dfrac{AB^2}{BH}=18\left(cm\right)\)
Áp dụng PTG: \(AC=\sqrt{BC^2-AB^2}=9\sqrt{3}\left(cm\right)\)
Áp dụng HTL: \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{9\cdot9\sqrt{3}}{18}=\dfrac{9\sqrt{3}}{2}\left(cm\right)\)
b, Áp dụng HTL: \(\left\{{}\begin{matrix}AB\cdot AE=AH^2\\AC\cdot AF=AH^2\end{matrix}\right.\Rightarrow AB\cdot AE=AC\cdot AF\)
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AF}{AE}\)
Mà góc A chung nên \(\Delta AEF\sim\Delta ACB\left(c.g.c\right)\)
Do đó \(\widehat{AEF}=\widehat{ACB}\)
AC=căn 10^2-8^2=6cm
AH=6*8/10=4,8cm
AE=AH^2/AB=4,8^2/8=2,88cm
AF=AH^2/AC=4,8^2/6=3,84cm
S AEF=1/2*2,88*3,84=5,5296cm2
S ABC=1/2*6*8=24cm2
=>S BEFC=24-5,5296=18,4704cm2
a) Tương tự: https://h.vn/hoi-dap/question/392113.html (1)
EH // AC (cùng _I_ AB)
=> \(\widehat{BHE}=\widehat{HCF}\) (2 góc so le trong)
=> \(\Delta EBH\) ~ \(\Delta FHC\) (g - g)
\(\Rightarrow\frac{EB}{FH}=\frac{EH}{FC}\)
\(\Rightarrow EB\times FC=EH\times FH\)
\(\Rightarrow EB\times FC\times BC=BC\times EH\times FH\) (2)
Từ (1) và (2) => đpcm
b)
Thay AH = x và BC = 2a vào \(AH^3=BC\times EH\times FH\), ta có:
\(x^3=2a\times EH\times FH\)
\(\Rightarrow FA\times AE=\frac{x^3}{2a}\) (EH = FA và FH = AE)
\(S_{AEF}=\frac{1}{2}\times FA\times AE=\frac{1}{2}\times\frac{x^3}{2a}=\frac{x^3}{4a}\left(\text{đ}v\text{d}t\right)\)
thks bn nha!!!