Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H E D 3 4
a)
Xét \(\Delta ABC\) và \(\Delta HBA\)có:
\(\widehat{BAC}=\widehat{AHB}\left(=90^ô\right)\)
\(\widehat{ABC}\)là góc chung (giả thiết)
Suy ra \(\Delta ABC\)đồng dạng với \(\Delta HBA\)(g.g)
b)
\(\Delta ABC\)vuông tại A
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)
\(\Delta ABC\)đồng dạng với \(\Delta HBA\)
\(\Rightarrow\frac{AC}{AH}=\frac{BC}{AB}\Leftrightarrow AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=2,4\left(cm\right)\)
c) Ta có
\(\hept{\begin{cases}\text{AH//DE}\\\widehat{AHC}=90^o\end{cases}\Rightarrow\widehat{CDE}=90^o}\)
Xét \(\Delta ABC\)và \(\Delta DEC\)có
\(\widehat{BAC}=\widehat{CDE}=90^o\)
\(\widehat{ACB}\)là góc chung (giả thiết)
Suy ra \(\Delta ABC\)đồng dạng với \(\Delta DEC\)(g.g)
\(\Rightarrow\frac{CA}{CB}=\frac{CD}{CE}\Leftrightarrow CE.CA=CD.CB\left(đpcm\right)\)
d)
\(\Delta AHB\)vuông tại H
\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{3^2-2,4^2}=1,8\left(cm\right)\)
Ta có; \(CD=BC-BH-DH=5-1,8-2,4=0,8\left(cm\right)\)
Ta lại có:
\(\frac{CA}{CB}=\frac{CD}{CE}\)(theo câu c)
\(\Rightarrow EC=\frac{CB.CD}{CA}=\frac{5.0,8}{4}=1\left(cm\right)\)
Ta lại có:
\(AE=AC-EC=4-1=3\left(cm\right)\)
mà \(AB=3cm\)nên \(AB=AE\)hay \(\Delta ABE\)cân tại A
Vậy \(\Delta ABE\)cân tại A
Đề còn lủng củng quá.
Sửa đề: Trên tia đối của tia HA, lấy điểm D sao cho AH = HD.
Hình vẽ (Nhập link rồi enter là ra):
a) \(\Delta ABC\)có điều kiện gì để ABDE lá hình vuông
ta có: AB//ED => \(\hept{\begin{cases}\widehat{BAE}=90^o\\AB=AE\end{cases}}\)
Giả sử ABDE là hình vuông => \(\hept{\begin{cases}\widehat{BAE}=90^o\\AB=AE\end{cases}}\)
ta có: \(\widehat{ABE}+\widehat{EAC}=\widehat{ABC}\Leftrightarrow\widehat{EAC}=\widehat{ABC}-\widehat{ABE}=90^o-90^o=0^o\)
=> Điểm E trùng với điểm C
mà AB = AE => AB = AC
Vậy \(\Delta ABC\) có AB = AC thỉ ABDE là hình vuông
b) Cho AB = 3cm; AC = 4cm. Tính SABE
Xét \(\Delta ABH\)và \(\Delta DEH\)có: \(\hept{\begin{cases}\widehat{BAH}=\widehat{EDH}\left(cmt\right)\\AH=HD\left(gt\right)\\\widehat{BHA}=\widehat{EHD}\left(cmt\right)\end{cases}.\Rightarrow\Delta ABH=\Delta DEH\Rightarrow BH=EH}\)(2 cạnh tương ứng)
Tứ giác ABDE có: \(\hept{\begin{cases}AH=DH\left(gt\right)\\AD\perp BE\left(gt\right)\\BH=EH\left(cmt\right)\end{cases}.}\)=> ABDE là hình thoi
Theo định lý Py-ta-go của \(\Delta ABC\), ta có: \(AB^2+AC^2=BC^2\Leftrightarrow BC^2=3^2+4^2=9+16=25\Rightarrow BC=5\left(cm\right)\)
ta có \(S_{ABC}=\frac{1}{2}\cdot AB\cdot AC=\frac{1}{2}\cdot AH\cdot BC\)
\(\Rightarrow AH\cdot BC=AB\cdot AC\Leftrightarrow AH=\frac{AB\cdot AC}{BC}=\frac{3\cdot4}{5}=\frac{12}{5}=2,4\left(cm\right)\)
Xét \(\Delta ABC\)và \(\Delta HBA\) có: \(\hept{\begin{cases}\widehat{ABC}.chung\\\widehat{BAC}=\widehat{BHA}\left(=90^o\right)\end{cases}\Rightarrow\Delta ABC}\)đồng dạng với \(\Delta HBA\)
\(\Rightarrow\frac{BC}{AB}=\frac{AB}{BH}\Leftrightarrow AB^2=BH\cdot BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{9}{5}=1,8\left(cm\right)\)
=> BE = 2 . BH = 2 . 1,8 = 3,6(cm)
\(S_{ABE}=\frac{1}{2}\cdot AH\cdot BE=\frac{1}{2}\cdot2,4\cdot3,6=4,32\left(cm^2\right)\)
Bài mình làm hơi dài, bạn có thể làm cách khác nhé
Học tốt ^3^
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành