Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ADH và tam giácAEK có:
AH=AK(gt)
góc ADH=góc AEK(gt)
AD =AE(gt)
vậy tam giác ADH=tam giác AEK(c-g-c)
=>AH=AK(2 cạnh tương ứng)
sai đừng giận mk nhé!!
Tự kẻ hình nha man,t nhác quá không muốn vẽ
Tam giác ADB và tam giác AEC bằng nhau vì \(AB=AC;\widehat{ABD}=\widehat{ACE};BD=AE\left(ezprove\right)\)
\(\Rightarrow\widehat{BAD}=\widehat{EAC}\Rightarrow\Delta AHD=\Delta AEK\left(ch-gn\right)\)
\(\Rightarrow AH=AK\left(đpcm\right)\)
Em lạy chị, chị đánh giấy giúp em với !!!
a) Xét 2 tam giác AHD và AHB có:
DH=BH (gt)
AH là cạnh chung
Do đó: AHD=AHB (tự hiểu)
\(\Rightarrow\) AD=AB (2 cạnh tương ứng) (Với lại do không có kí hiệu tam giác nên nếu ghi sẽ rất mất thời gian)
Xét tam giác ABD có :
AD=AB (cmt)
Do đó: ABD cân tại A
Xét tam giác ABC vuông tại A có:
\(\widehat{ABC}\) + \(\widehat{ACB}=90^o\) ( t/c của tam giác vuông)
hay \(\widehat{ABC}=90^o-30^o\)
\(\widehat{ABC}=60^o\)
Xét tam giác ABD cân tại A có:
\(\widehat{ABC}=60^o\) (cmt) (cần không nhỉ ???)
Do đó: ABD đều (ĐPCM)
b) Chứng minh tứ giác CEHA là hình thang sẽ suy ra được EH//CA (tự động não đi)
a: \(\widehat{HAB}=90^0-60^0=30^0\)
b: Xét ΔAHI và ΔADI có
AH=AD
HI=DI
AI chung
Do đó: ΔAHI=ΔADI
Ta có: ΔAHD cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
c: Xét ΔAHK và ΔADK có
AH=AD
\(\widehat{HAK}=\widehat{DAK}\)
AK chung
Do đó: ΔAHK=ΔADK
Suy ra: \(\widehat{AHK}=\widehat{ADK}=90^0\)
=>DK//AB
\(\widehat{KAE}+\widehat{BAE}=90^0\)
\(\widehat{HAE}+\widehat{BEA}=90^0\)
mà \(\widehat{BAE}=\widehat{BEA}\)
nên \(\widehat{KAE}=\widehat{HAE}\)
Xét ΔKAE vuông tại K và ΔHAE vuông tại H có
AE chung
\(\widehat{KAE}=\widehat{HAE}\)
Do đó: ΔKAE=ΔHAE
Suy ra: AK=AH