K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2018

ý 1 câu a )

 có ED vuông góc BC  ; AH vuông góc BC  => ED//AH =>  tam giác CDE đồng dạng vs tam giác CHA  ( talet)      (1)

 xét tam giác CHA  và tam giác CAB  có CHA=CAB=90 độ ; C chung => tam giác CHA  đồng dạng vs tam giác CAB ( gg) (2)

  từ (1) và (2) =>tam giác CDE  đồng dạng tam giác CAB  (  cùng đồng dạng tam giác CHA )

 có tam giác CDE đồng dạng tam giác CAB  (cmt) => \(\frac{CE}{CB}=\frac{CD}{CA}\)

xét tam giác BAC  và tam giác ADC  có góc C chung và \(\frac{CE}{BC}=\frac{CD}{AC}\left(CMT\right)\) => tam giác BAC đồng dạng vs tam giác ADC (  trường hợp c-g-c) , mấy câu kia quên mịa nó r -.-

25 tháng 8 2018

thanks bạn

6 tháng 9 2015

bạn vô đây coi bài nào thích hớp thì xem Cho tam giác ABC. Trên tia đối của tia BC lấy điểm D sao cho BD = AB. Trên tia đối của tia CB lấy điểm E sao cho CE = AC. Gọi H là chân đường vuông góc kể từ B đến AD, K là chân đường vuông góc kẻ từ C đến AE a) Chứng minh rằng HK song song với DE b) Tính HK, biết chu vi tam giác ABC bằng 10 cm Bài 2 Cho tam giác ABC, đường trung tuyến AM. Trên tia đối của tia AM lấy điểm N sao cho AN = AM. Gọi K là giao điểm của CA và NB. Chứng minh NK = 1/2 KB... Xem thêm - Tìm với Google

20 tháng 10 2019

a.BH=9 HC=16 HA=12

b. 

tamg BDC đồng dạng EHC=>g CBD= g HEC

tan HEC=HC\EH=HC\2AH=25\2.12=25\24

=>HEC=46 độ 10=CBD

1.Cho tam giác ABC vuông tại A (ab<AC) cso AH là đường cao. Biết BH=9cmHC=16cma. Tính AH,ACM số đo góc ABCB. Gọi M là trung điểm của BC đường vuông góc với BC tại M cắt đường thẳng AC và BA theo thứ tự E và F. Chứng minh BH.BF=MB.ABC. Gọi I là trung điểm của È.chứng minh IA là bán kính của đường tròn tâm I bán KÍNH IFD. Chứng minh MA là tiếp tuyến của đường tòn tâm Ibán kính IF2. Cho tam giấc ABC nội...
Đọc tiếp

1.Cho tam giác ABC vuông tại A (ab<AC) cso AH là đường cao. Biết BH=9cmHC=16cm
a. Tính AH,ACM số đo góc ABC
B. Gọi M là trung điểm của BC đường vuông góc với BC tại M cắt đường thẳng AC và BA theo thứ tự E và F. Chứng minh BH.BF=MB.AB
C. Gọi I là trung điểm của È.chứng minh IA là bán kính của đường tròn tâm I bán KÍNH IF
D. Chứng minh MA là tiếp tuyến của đường tòn tâm Ibán kính IF
2. Cho tam giấc ABC nội tiếp đường tròn (o) đườn kính BC. Vẽ dây AD của (o) vuông góc với đường kính BC tại H. Gọi M là trung điểm của cạnh AC.Từ M vẽ đường thẳng vuông góc với OC, đường thẳng này cắt OI tại N trên tia ON lấy điểm S sao cho N là trung điểm của cạnh OS
A. Chứng minh tam giác ABC vuông tại A và HA=HD
B. Chứng minh MN//SC và SC là tiếp tuyến của đường trong (O)
c. Gọi K là trung điểm của cạnh HC vẽ đương tròn đường lính AH cắt cạnh AK tại F chứng minh BH. HC= À. AK 
D. T rên tia đối của tia BA lấy điểm E sao hco B là trung điểm của cạnh AE chứng minh E,H,F thẳng hàng
GIÚP MÌNH VỚI!!!

1
18 tháng 12 2016

tớ ko biết

DD
21 tháng 7 2021

a) Xét tam giác \(AHB\)vuông tại \(H\)

\(AB^2=AH^2+HB^2\)(định lí Pythagore) 

\(\Rightarrow AB=\sqrt{AH^2+HB^2}=\sqrt{4^2+3^2}=5\left(cm\right)\)

Xét tam giác \(ABC\)vuông tại \(A\)đường cao \(AH\)

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AB^2}=\frac{1}{4^2}-\frac{1}{5^2}\)

\(\Rightarrow AC=\frac{20}{3}\left(cm\right)\)

\(BC^2=AB^2+AC^2\)(định lí Pythagore) 

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{25+\frac{400}{9}}=\frac{25}{3}\left(cm\right)\)

\(HC=BC-HB=\frac{25}{3}-3=\frac{16}{3}\left(cm\right)\)

b) Xét tam giác \(AID\)có: \(B\)là trung điểm của \(AD\)

\(BH//ID\)(vì cùng vuông góc với \(AI\)

nên \(BH\)là đường trung bình của tam giác \(AID\).

Suy ra \(H\)là trung điểm của \(AI\).

\(\Rightarrow AH=HI\Rightarrow HI=\frac{1}{2}HE\)

do đó \(I\)là trung điểm của \(HE\).

\(P=2tan\widehat{IED}-3tan\widehat{ECH}\)

\(=2\frac{ID}{IE}-3\frac{CH}{HE}\)

\(=\frac{4HB}{AH}-\frac{3}{2}\frac{CH}{AH}\)

\(=\frac{8.3-3.\frac{16}{3}}{2.4}=1\)

c) \(tan\widehat{IED}=\frac{ID}{IE}=\frac{2HB}{AH}=\frac{2.3}{4}=\frac{3}{2}\)

\(cot\widehat{CEH}=\frac{EH}{CH}=\frac{2AH}{CH}=\frac{2.4}{\frac{16}{3}}=\frac{3}{2}\)

\(tan\widehat{IED}=cot\widehat{CEH}\Rightarrow\widehat{IED}+\widehat{CEH}=90^o\Rightarrow\widehat{CED}=90^o\)

do đó ta có đpcm.