K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Bảng xếp hạng
Tất cả
Toán
Vật lý
Hóa học
Sinh học
Ngữ văn
Tiếng anh
Lịch sử
Địa lý
Tin học
Công nghệ
Giáo dục công dân
Âm nhạc
Mỹ thuật
Tiếng anh thí điểm
Lịch sử và Địa lý
Thể dục
Khoa học
Tự nhiên và xã hội
Đạo đức
Thủ công
Quốc phòng an ninh
Tiếng việt
Khoa học tự nhiên
- Tuần
- Tháng
- Năm
-
DHĐỗ Hoàn VIP60 GP
-
50 GP
-
41 GP
-
26 GP
-
119 GP
-
VN18 GP
-
14 GP
-
N12 GP
-
LD10 GP
-
H10 GP
a, △ABC vuông tại A có AH là đường cao.
\(\Rightarrow\left\{{}\begin{matrix}HB.BC=AB^2\\HC.BC=AC^2\end{matrix}\right.\) (hệ thức lượng trong tam giác vuông)
\(\Rightarrow\dfrac{HB.BC}{HC.BC}=\dfrac{HB}{HC}=\dfrac{AB^2}{AC^2}\)
b, △ABH vuông tại H có HD là đường cao.
\(\Rightarrow BD.AB=BH^2\) (hệ thức lượng trong tam giác vuông)
\(\Rightarrow BD=\dfrac{BH^2}{AB}\left(1\right)\)
△ACH vuông tại H có HE là đường cao.
\(\Rightarrow EC.AC=CH^2\) (hệ thức lượng trong tam giác vuông)
\(\Rightarrow EC=\dfrac{CH^2}{AC} \left(2\right)\)
Từ (1), (2) suy ra:
\(\dfrac{DB}{EC}=\dfrac{\dfrac{BH^2}{AB}}{\dfrac{CH^2}{AC}}=\left(\dfrac{BH}{CH}\right)^2.\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}.\dfrac{AC}{AB}=\left(\dfrac{AB}{AC}\right)^3\)
c, Có: \(\left\{{}\begin{matrix}BD.AB=BH^2\\EC.AC=CH^2\end{matrix}\right.\Rightarrow BD.EC.AB.AC=BH^2.CH^2\)
Mà \(\left\{{}\begin{matrix}BH.CH=AH^2\\AH.BC=AB.AC\end{matrix}\right.\)
\(\Rightarrow BD.EC.AH.BC=AH^4\)
\(\Rightarrow BD.EC.BC=AH^3\)
You yourself draw the figure.
a) Consider the right triangle ABC (which has \(\widehat{A}=90^o\)) has the height AH, thus, we have \(AB^2=HB.BC\)
Similarly, we have \(AC^2=HC.BC\)
From these, we get \(\dfrac{HB.BC}{HC.BC}=\dfrac{AB^2}{AC^2}\Leftrightarrow\dfrac{HB}{HC}=\left(\dfrac{AB}{AC}\right)^2\)
b) We can easily prove that \(\Delta BDH~\Delta HEC\left(a.a\right)\), therefore, \(\dfrac{DB}{HE}=\dfrac{HB}{HC}\)
Then, we can see that \(\dfrac{HB}{HC}=\left(\dfrac{AB}{AC}\right)^2\), so, we have \(\dfrac{DB}{HE}=\left(\dfrac{AB}{AC}\right)^2\), and the thing we have to prove is the same of \(\dfrac{DB}{HE}=\dfrac{DB}{EC}\) or \(HE=EC\), but this is clearly wrong. You have to edit the title.
c) This title is also wrong. \(BD.CE.BC=DB^3\Leftrightarrow CE.BC=DB^2\) which make no sense.