K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2022

a, △ABC vuông tại A có AH là đường cao.

\(\Rightarrow\left\{{}\begin{matrix}HB.BC=AB^2\\HC.BC=AC^2\end{matrix}\right.\) (hệ thức lượng trong tam giác vuông)

\(\Rightarrow\dfrac{HB.BC}{HC.BC}=\dfrac{HB}{HC}=\dfrac{AB^2}{AC^2}\)

b, △ABH vuông tại H có HD là đường cao.

\(\Rightarrow BD.AB=BH^2\) (hệ thức lượng trong tam giác vuông)

\(\Rightarrow BD=\dfrac{BH^2}{AB}\left(1\right)\)

△ACH vuông tại H có HE là đường cao.

\(\Rightarrow EC.AC=CH^2\) (hệ thức lượng trong tam giác vuông)

\(\Rightarrow EC=\dfrac{CH^2}{AC} \left(2\right)\)

Từ (1), (2) suy ra:

\(\dfrac{DB}{EC}=\dfrac{\dfrac{BH^2}{AB}}{\dfrac{CH^2}{AC}}=\left(\dfrac{BH}{CH}\right)^2.\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}.\dfrac{AC}{AB}=\left(\dfrac{AB}{AC}\right)^3\)

c, Có: \(\left\{{}\begin{matrix}BD.AB=BH^2\\EC.AC=CH^2\end{matrix}\right.\Rightarrow BD.EC.AB.AC=BH^2.CH^2\)

Mà \(\left\{{}\begin{matrix}BH.CH=AH^2\\AH.BC=AB.AC\end{matrix}\right.\)

\(\Rightarrow BD.EC.AH.BC=AH^4\)

\(\Rightarrow BD.EC.BC=AH^3\)

 

 

29 tháng 6 2022

You yourself draw the figure.

a) Consider the right triangle ABC (which has \(\widehat{A}=90^o\)) has the height AH, thus, we have \(AB^2=HB.BC\) 

Similarly, we have \(AC^2=HC.BC\) 

From these, we get \(\dfrac{HB.BC}{HC.BC}=\dfrac{AB^2}{AC^2}\Leftrightarrow\dfrac{HB}{HC}=\left(\dfrac{AB}{AC}\right)^2\)

b) We can easily prove that \(\Delta BDH~\Delta HEC\left(a.a\right)\), therefore, \(\dfrac{DB}{HE}=\dfrac{HB}{HC}\)

Then, we can see that \(\dfrac{HB}{HC}=\left(\dfrac{AB}{AC}\right)^2\), so, we have \(\dfrac{DB}{HE}=\left(\dfrac{AB}{AC}\right)^2\), and the thing we have to prove is the same of \(\dfrac{DB}{HE}=\dfrac{DB}{EC}\) or \(HE=EC\), but this is clearly wrong. You have to edit the title.

c) This title is also wrong. \(BD.CE.BC=DB^3\Leftrightarrow CE.BC=DB^2\) which make no sense.