K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2019

\(\text{a) Xét tam giác AHC có:}\)

\(\text{M là trung điểm AH}\)

\(\text{N là trung điểm HC}\)

\(\text{Do đó: MN là đường trung bình của tam giác AHC}\)

\(\Rightarrow MN//AC\text{ và }MN=\frac{1}{2}.AC\)

6 tháng 8 2019

k dùng  tính chất đường trung bình nha bạn , bạn còn cách khác k ạ

7 tháng 8 2019

Sao không được làm tính chất đường trung bình hả bạn? Nguyễn Thanh Huyền

14 tháng 8 2019

bạn ơi vì bài này lớp 7 nên cô mk chưa cho áp dụng tc đường trung bình bạn ạ

19 tháng 1 2022

-Em ơi hình như đề bài sai rồi ấy ( C trùng với M).

7 tháng 1 2017

e của góc A hay cái gì 

25 tháng 3 2016

a/ Ta có AN vuông góc AC; HM vuông góc AC => AN//HM (1)

Ta có AM vuông góc AB; HN vuông góc AB => AM//HN (2)

=> Tứ giác AMHN là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

AH; MN là hai đường chéo của hbh nên chúng cắt nhau tại trung điểm mỗi đường

b/ Trước hết ta phải c/m A, I, K thẳng hàng

Nối AI; AK

+ Xét tam giác AHK có

Hình bình hành AMHN có ^MAN=90 => ^ANM =90 => AN vuông góc HK nà NK=NH

=> tam giác AKH cân tại A (Tam giác có đường cao đồng thời là đường trung tuyến là tam giác cân)

=> ^KAN=^HAN (1) (trong tam giác cân đường cao đồng thời là đường phân giác)

+ Xét tam giác AIH chứng minh tương tự ta cũng có

^HAM=^IAM (2)

+ Mà ^HAN+^HAM=^BAC=90 (3)

Từ (1) (2) (3) => ^KAN+^IAM=^HAN+^HAM=90

=> ^KAN+^HAN+HAM+^IAM=180 => A,I,K thẳng hàng

+ Ở trên ta đã chứng minh được tam giác AKH và tam giác AIH là tam giác cân tại A

=> AK=AH=AI => A là trung điểm của IK

+ Xét tam giác

27 tháng 3 2016

mình chưa học hình bình hành hay tứ giác

13 tháng 4 2015

không sai đề đâu

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.2)Cho tam giác ABC vuông tại A, K là trung điểm của...
Đọc tiếp

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?

3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.

5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM

3
13 tháng 7 2015

bạn đăng từng bài lên 1 đi

mik giải dần cho

30 tháng 1 2017

dễ mà bn