K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2023

Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

=>\(\widehat{AED}=\widehat{AHD}\)

AM\(\perp\)DE

=>\(\widehat{AED}+\widehat{MAC}=90^0\)

mà \(\widehat{AED}=\widehat{AHD}\left(cmt\right)\) 

và \(\widehat{AHD}=\widehat{ABH}\left(=90^0-\widehat{HAB}\right)\)

nên \(\widehat{ABH}+\widehat{MAC}=90^0\)

mà \(\widehat{ABH}+\widehat{MCA}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{MAC}=\widehat{MCA}\)

=>MA=MC

\(\widehat{MAC}+\widehat{MAB}=\widehat{BAC}=90^0\)

\(\widehat{MCA}+\widehat{MBA}=90^0\)(ΔABC vuông tại A)

mà \(\widehat{MAC}=\widehat{MCA}\)

nên \(\widehat{MAB}=\widehat{MBA}\)

=>MA=MB

mà MA=MC

nên MB=MC

=>M là trung điểm của BC

( Hình em tự vẽ nhé! )

Lấy O là giao điểm DE và HA

+ Xét tứ giác ADHE có:

\(\widehat{HDA}=\widehat{DAE}=\widehat{AEH}=90^o\)

=> ADHE là hình chữ nhật

=> O là trung điểm AH (t/c)

     O là trung điểm DE (t/c)

=> OA = OH = OD = OE 

=> ΔAOE cân tại O

=> \(\widehat{OAE}=\widehat{OEA}\left(tc\right)\)

+ Xét ΔABH vuông tại H

=> \(\widehat{BAH}+\widehat{ABH}=90^o\)

Mà \(\widehat{BAH}+\widehat{CAH}=90^o\)

=> \(\widehat{ABH}=\widehat{CAH}\)

Mà \(\widehat{CAH}=\widehat{OEH}\)

\(\widehat{ABH}=\widehat{AEO}\)

+ Xét ΔADE và ΔACB có:

\(\widehat{DAE}=\widehat{CAB}\left(=90^o\right)\)

\(\widehat{AED}=\widehat{ABC}\)

=> ΔADE \(\sim\) ΔACB (g.g)

=> \(\widehat{ADE}=\widehat{ACB}\left(2gtu\right)\)

Lấy I là giao điểm AM và DE 

+ Xét ΔAIE vuông tại I 

=> \(\widehat{IAE}+\widehat{IEA}=90^o\)

Mà \(\widehat{BAM}+\widehat{MAC}=90^o\)

=> \(\widehat{IEA}=\widehat{MAB}\)

Mà \(\widehat{IEA}=\widehat{ABC}\)

=> \(\widehat{ABC}=\widehat{BAM}\)

=> ΔABM cân tại M

=> MA = MB (t/c)

+ Xét ΔAID vuông tại I

=> \(\widehat{IDA}+\widehat{IAD}=90^o\)

Mà \(\widehat{IAD}+\widehat{MAC}=90^o\)

=> \(\widehat{IDA}=\widehat{MAC}\)

Mà \(\widehat{IDA}=\widehat{ACM}\)

=> \(\widehat{MAC}=\widehat{ACM}\)

=> ΔMAC cân tại M

=> MA = MC (t/c)

Mà MA = MB 

=> MB = MC

=> M là trung điểm BC.

18 tháng 11 2023

1: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

=>AH=DE

2: \(\widehat{EDM}=90^0\)

=>\(\widehat{EDH}+\widehat{MDH}=90^0\)

=>\(\widehat{EAH}+\widehat{MDH}=90^0\)

=>\(\widehat{MDH}+\widehat{HAC}=90^0\)

=>\(\widehat{MDH}+\widehat{ABC}=90^0\)

mà \(\widehat{MHD}+\widehat{MBD}=90^0\)

nên \(\widehat{MDH}=\widehat{MHD}\)

=>MD=MH

\(\widehat{MDH}+\widehat{MDB}=\widehat{HDB}=90^0\)

\(\widehat{MHD}+\widehat{MBD}=90^0\)(ΔHDB vuông tại D)

mà \(\widehat{MDH}=\widehat{MHD}\)

nên \(\widehat{MDB}=\widehat{MBD}\)

=>MD=MB

=>MB=MH

=>M là trung điểm của BH

\(\widehat{NED}=90^0\)

=>\(\widehat{NEH}+\widehat{DEH}=90^0\)

=>\(\widehat{NEH}+\widehat{DAH}=90^0\)

mà \(\widehat{DAH}=\widehat{C}\left(=90^0-\widehat{ABC}\right)\)

nên \(\widehat{NEH}+\widehat{C}=90^0\)

mà \(\widehat{NHE}+\widehat{C}=90^0\)(ΔHEC vuông tại E)

nên \(\widehat{NEH}=\widehat{NHE}\)

=>NE=NH

\(\widehat{NEH}+\widehat{NEC}=\widehat{CEH}=90^0\)

\(\widehat{NHE}+\widehat{NCE}=90^0\)(ΔCEH vuông tại E)

mà \(\widehat{NHE}=\widehat{NEH}\)

nên \(\widehat{NEC}=\widehat{NCE}\)

=>NE=NC

mà NH=NE

nên NC=NH

=>N là trung điểm của HC

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC b ) Chứng minh , BF.FC = DF.EF  c ) Tính BC biết DE = 5cm , EF = 4cm . d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC   .Bài 26...
Đọc tiếp

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. 

a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC 

b ) Chứng minh , BF.FC = DF.EF 

 c ) Tính BC biết DE = 5cm , EF = 4cm 

. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC

 

 

 .Bài 26 : Cho  tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC 

a ) Chứng minh : AH = EF 

b ) Chứng minh : AB^2 = BH.BC 

c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác  ABC 

d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB . 

 

 

Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K. 

a ) Tính BC , AD 

b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB , 

c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .

3
2 tháng 9 2020

Bài 26 :                                             Bài giải

a. Do AB⊥AC,HE⊥AB,HF⊥AC

⇒EAF^=AEH^=AFH^=90o

→◊AEHF là hình chữ nhật

2 tháng 9 2020

Bài 27 :                                                                  Bài giải

Hình : 

A B C D H K M x J

Còn bài giải tham khảo : Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

a: Xét tứ giác AEHD có 

\(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\)

Do đó: AEHD là hình chữ nhật

a: Xét tứ giác AEHD có 

\(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\)

Do đó: AEHD là hình chữ nhật

18 tháng 11 2023

Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)

=>ADHE là hình chữ nhật

=>\(\widehat{AED}=\widehat{AHD}\)

mà \(\widehat{AHD}=\widehat{ABC}\left(=90^0-\widehat{HAB}\right)\)

nên \(\widehat{AED}=\widehat{ABC}\)

ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MC=MB

MA=MC

=>ΔMAC cân tại M

=>\(\widehat{MAC}=\widehat{MCA}=\widehat{ACB}\)

\(\widehat{MAC}+\widehat{AED}=\widehat{ACB}+\widehat{ABC}=90^0\)

=>AM vuông góc DE

10 tháng 9 2018

Bạn tham khảo bài làm ở đường link phía dưới nhé:

Câu hỏi của Nguyễn Desmond - Toán lớp 8 - Học toán với OnlineMath