Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Tứ giác ADHE là hình chữ nhật (tự chứng minh nhé)
⇒DE=AH⇒DE3=AH3
⇒AH5=AH4.AH=BH2.CH2.AH=BD.BA.CE.CA.AH=BD.CE.AH.BC.AH=BD.CE.BC.AH2
⇒AH3=BD.CE.BC⇔DE3=BD.CE.BC(dpcm)
Lời giải:
a) Áp dụng đl Pitago cho các tam giác vuông $BHE, CHF$:
\(BC^2=(BH+CH)^2=BH^2+CH^2+2BH.CH\)
\(=BE^2+EH^2+FH^2+CF^2+2BH.CH\)
\(=(EH^2+HF^2)+2BH.CH+BE^2+CF^2(1)\)
Xét tứ giác $AEHF$ có 3 góc vuông \(\widehat{EAF}=\widehat{HFA}=\widehat{AEH}=90^0\) nên $AEHF$ là hình chữ nhật
\(\Rightarrow HF=EA\)
Do đó: \(EH^2+HF^2=EH^2+EA^2=AH^2(2)\) (theo định lý Pitago)
Xét tam giác $BAH$ và $ACH$ có:
\(\widehat{BAH}=\widehat{ACH}(=90^0-\widehat{HAC})\)
\(\widehat{BHA}=\widehat{AHC}=90^0\)
\(\Rightarrow \triangle BAH\sim \triangle ACH(g.g)\Rightarrow \frac{BH}{AH}=\frac{AH}{CH}\Rightarrow BH.CH=AH^2(3)\)
Từ \((1);(2);(3)\Rightarrow BC^2=AH^2+2.AH^2+BE^2+CF^2=3AH^2+BE^2+CF^2\)
(đpcm)
b)
Xét tam giác $BAH$ và $BCA$ có:
\(\widehat{B}\) chung
\(\widehat{BHA}=\widehat{BAC}=90^0\)
\(\Rightarrow \triangle BAH\sim \triangle BCA(g.g)\Rightarrow \frac{BA}{BH}=\frac{BC}{BA}\)
\(\Rightarrow BH=\frac{BA^2}{BC}(4)\)
Hoàn toàn tương tự: \(\triangle CAH\sim \triangle CBA(g.g)\Rightarrow CH=\frac{CA^2}{BC}(5)\)
Từ \((4);(5)\Rightarrow \frac{BH}{CH}=\frac{BA^2}{BC}:\frac{CA^2}{BC}=\frac{BA^2}{CA^2}\) (đpcm)
c)
Hoàn toàn tương tự như cách CM tam giác đồng dạng phần b, ta có:
\(\triangle BHE\sim \triangle BAH(g.g)\Rightarrow \frac{BH}{BA}=\frac{BE}{BH}\Rightarrow BE=\frac{BH^2}{AB}\)
\(\triangle CHF\sim \triangle CAH(g.g)\Rightarrow \frac{CH}{CA}=\frac{CF}{CH}\Rightarrow CF=\frac{CH^2}{CA}\)
Do đó, kết hợp với kết quả phần b:
\(\frac{BE}{CF}=\frac{BH^2}{AB}:\frac{CH^2}{CA}=(\frac{BH}{CH})^2.\frac{CA}{AB}=\frac{AB^4}{AC^4}.\frac{AC}{AB}=\frac{AB^3}{AC^3}\) (đpcm)
d) Ta có:
\(BC.HE.HF=BC.\frac{HE.BA}{BA}.\frac{HF.AC}{AC}=BC.\frac{2S_{BHA}}{BA}.\frac{2S_{CHA}}{CA}\)
\(=BC.\frac{BH.AH}{BA}.\frac{CH.AH}{CA}=\frac{BC.AH}{AB.AC}.AH.BH.CH\)
\(=\frac{2S_{ABC}}{2S_{ABC}}.AH.AH^2\) (theo (3))
\(=AH^3\) (đpcm)
a) ΔABH vuông tại H, theo định lý Py-ta-go ta có:
AH2+BH2=AB2 (1)
ΔABC vuông tại A, đường cao AH, theo hệ thức lượng ta có:
=> AB2=BH.BC (2)
Từ (1) và (2) => BH.BC=AH2+BH2 ( = AB2)
b) Xét ΔAHB vuông tại H, HE là đường cao
=> AH2=AE.AB (1)
Xét ΔAHC vuông tại H, HF là đường cao
=> AH2=AF.AC (2)
Từ (1) và (2) => AE.AB=AF.AC (AH2)