K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2016

Hình tự túc, bùn ngủ => ko vẽ nữa.

a) Ta có: AC _|_ AB ; HE _|_ AB =>  AC // HE

=> FHA^ = EAH^ (sole trong)

    FAH^ = EHA^ (sole trong)

Xét \(\Delta\)FAH và \(\Delta\)EHA :

FHA^ = EAH^ 

AH chung

FAH^ = EHA^ 

=> \(\Delta\)FAH = \(\Delta\)EHA (g.c.g)

=> FA = EH (2 cạnh tương ứng)

Xét \(\Delta\)FAE và \(\Delta\)HEA:

FAE^ = HEA^ =90o

FA = EH (cmt)

AE chung

=> \(\Delta\)FAE = \(\Delta\)HEA (2 cạnh góc vuông)

=> FE = HA (2 cạnh tương ứng)

b) Bn ơi, chữ EI hơi lạ. Xem lại nhé.

20 tháng 4 2023

Bạn tự vẽ hình. Gợi ý:

- Chứng minh tứ giác AEHF là hình chữ nhật.

*Gọi K là giao điểm của AH và EF. Khi đó K là trung điểm AH.

- Chứng minh tam giác AHM cân tại A. Suy ra \(\widehat{MAB}=\widehat{HAB}\)

Mặt khác \(\widehat{HAB}=\widehat{ABI}\) (BI//AH) \(\Rightarrow\widehat{MAB}=\widehat{ABI}\)

\(\Rightarrow\)△ABI cân tại I nên AI=BI.

*CA cắt BI tại S. Chứng minh I là trung điểm BS.

Đến đây bài toán đã trở nên đơn giản hơn (chỉ chú ý vào các điểm C,A,H,B,S và K).

- CK cắt BS tại I'. Khi đó ta cũng c/m được I' là trung điểm BS.

\(\Rightarrow I\equiv I'\) nên C,K,I thẳng hàng.

Suy ra đpcm.

 

10 tháng 11 2021

a, Vì \(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\) nên AEHD là hcn

Do đó AH=DE

b, Vì \(\widehat{HAB}=\widehat{MCA}\) (cùng phụ \(\widehat{CAH}\))

Mà \(\widehat{MCA}=\widehat{MAC}\) (do \(AM=CM=\dfrac{1}{2}BC\) theo tc trung tuyến ứng ch)

Vậy \(\widehat{HAB}=\widehat{MAC}\)

c, Gọi O là giao AM và DE

Vì AEHD là hcn nên \(\widehat{HAB}=\widehat{ADE}\Rightarrow\widehat{MAC}=\widehat{ADE}\)

Mà \(\widehat{ADE}+\widehat{AED}=90^0\left(\Delta AED\perp A\right)\) nên \(\widehat{MAC}+\widehat{ADE}=90^0\)

Xét tam giác AOE có \(\widehat{AOE}=180^0-\left(\widehat{MAC}+\widehat{ADE}\right)=90^0\)

Vậy AM⊥DE tại O

15 tháng 10 2016

online math cho 0 diem di

2 tháng 10 2021

Gọi O là giao của EF và AH, K là giao AM và EF

Vì \(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\) nên AEHF là hcn

Do đó \(OE=OF=OH=OA\)

\(\Rightarrow\Delta AOF\) cân tại O \(\Rightarrow\widehat{AFO}=\widehat{FAO}\left(1\right)\)

Vì AM là trung tuyến ứng với cạnh huyền BC nên \(AM=BM=CM=\dfrac{1}{2}BC\)

\(\Rightarrow\Delta AMC\) cân tại M \(\Rightarrow\widehat{MCA}=\widehat{MAC}\left(2\right)\)

Vì tam giác AHC vuông tại H nên \(\widehat{MCA}+\widehat{FAO}=90^0\left(3\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\widehat{MAC}+\widehat{AFO}=90^0\)

Mà \(\widehat{AFO}+\widehat{MAC}+\widehat{AKF}=180^0\Rightarrow\widehat{AKF}=90^0\)

Vậy AM vuông góc EF

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

ĐIểm $M$ là điểm nào thế bạn?