Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Có ∠BAH= ∠BCA (vì cùng phụ với ∠HAC)
=> ∠BAH+ ∠HAD= ∠BCA + ∠DAC (vì AD là tia phân giác ∠HAC)
=> ∠BAD= ∠BCA + ∠DAC
Xét ΔADC có ∠ADB là góc ngoài tại D => ∠ADB= ∠BCA + ∠DAC
=> ∠BAD= ∠ADB
=> ΔABD cân tại B
b, Xét ΔABD cân tại B => AB= BD
Xét ΔABC vuông tại A
=> AB²= BH. BC
= (BD- HD). BC
= (AB- 6). 25
= 25 AB- 150
=> AB²- 25AB+ 150= 0
<=> (AB-15)(AB-10)= 0
<=> AB= 15 hoặc AB= 10
Vậy AB= 15cm, hoặc AB= 10 cm
* tự vẽ hình nha !!!
a, có góc BAD =90độ -góc A1; góc BDA=90độ-góc A2
mà góc A1=A2=> góc BAD=góc BDA do đó tam giác BAD cân tại B.
hoặc .
Vậy hoặc .
a, Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)
Áp dụng HTL: \(AH=\dfrac{AB\cdot AC}{BC}=12\left(cm\right)\)
b, Áp dụng HTL: \(HC=\dfrac{AC^2}{BC}=16\left(cm\right)\)
Vì AD là p/g nên \(\dfrac{HD}{DC}=\dfrac{AH}{AC}=\dfrac{3}{5}\Rightarrow HD=\dfrac{3}{5}DC\)
Mà \(DH+DC=HC=16\Rightarrow\dfrac{8}{5}DC=16\Rightarrow DC=10\left(cm\right)\)
\(\Rightarrow DH=6\left(cm\right)\\ \Rightarrow DB=BH+HD=25-16+6=15=AB\)
Do đó tg ABD cân tại B
a: Xét ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC và AC^2=CH*BC
=>AB^2/AC^2=BH/CH
b: S AHC=8,64
=>1/2*AH*HC=8,64
=>AH*HC=17,28
S AHB=15,36
=>1/2*AH*HB=15,36
=>AH*HB=30,72
mà AH*HC=17,28
nên AH*AH*HB*HC=30,72*17,28
=>AH^2*AH^2=30,72*17,28
=>AH^4=530,8416
=>\(AH=\sqrt[4]{530.8416}=4.8\left(cm\right)\)
b) xét ∆ABC có AD là đường phân giác của góc A
=>BD/AB=DC/AC ( tính chất)
Áp dụng tính chất dãy tỉ số bằng nhau , được :
BD/AB=DC/AC=BD/6=DC/8=(BD+DC)/(6+8)=BD/14=10/14=5/7
==>BD=6×5:7≈4,3
==>DC=10-4,3≈5,7
a,Áp dụng định lý Pi-ta-go vào tam giác ABC => tam giác ABC vuông tại A=> AH vuông góc vs BC
=> tam giác ABC đồng dạng vs tam giác HAC ( g.c.g)
b, Vì tam giác ABC vuông tại A nên ta có hệ thức: AC2=BC . HC => đpcm
c, có AD là tia phân giác của tam giác ABC => BD=CD=BC/2= 5cm
không giải được