Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H E F
a) Sử dụng hệ thức lượng trong các tam giác vuông ABH; ACH và ABC
\(AB.BE=BH^2;AC.CF=CH^2\)
\(AB^2=BH.BC;AC^2=CH.BC\)
=> \(\frac{AB^3}{AC^3}=\frac{BE}{CF}\)
<=> \(\frac{AB^4}{AC^4}=\frac{BE.AB}{CF.AC}=\frac{BH^2}{CH^2}\)
<=> \(\frac{AB^2}{AC^2}=\frac{BH}{CH}\)
<=> \(\frac{BH.BC}{CH.BC}=\frac{BH}{CH}\)
<=> \(\frac{BH}{CH}=\frac{BH}{CH}\) đúng
Vậy ta có điều phải chứng minh là đúng
b)
Ta có: \(AH^2=BH.CH\)
=> \(AH^4=BH^2.CH^2=BE.AB.CF.AC=BE.CF.AB.AC=BE.CF.AH.BC\)
=> \(AH^3=BC.BE.CF\)
c)
Xét tam giác vuông BEH và tam giác vuông HFC
có: ^EBH =^FHC ( cùng phụ góc FCH)
=> Tam giác BEH đồng dạng tam giác HFC
=> \(\frac{BE}{HF}=\frac{EH}{FC}\Rightarrow BE.FC=EH.FH\)
=> \(AH^3=BC.HE.HF\)