K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2019

A) Xét \(\Delta_VABH\) và \(\Delta_vCBA\):

\(\widehat{B}\): chung

\(\Rightarrow\Delta_vABH\sim\Delta_vCBA\left(gn\right)\)

B) Đề sai vì BC\(=\sqrt{6^2+8^2}=10\left(cm\right)\)

\(\Rightarrow BE=10-4=6\left(cm\right)\)

\(AH=\frac{6.8}{10}=4,8\left(cm\right)\)

mà \(AH^2=BH.HC\) nên AH=BE

Vậy đề sai.

C) Có: \(BH=\frac{AB^2}{BC}=\frac{6^2}{10}=3,6\left(cm\right)\)

\(S_{ABH}=\frac{1}{2},3,6.4,8=8,64\left(cm^2\right)\)

12 tháng 1 2020

Chiều cao AH của tam giác là :

    \(\frac{120.2}{20}=12\left(cm\right)\)

Tứ giác nào thế ạ ??

a: Xét ΔAHB vuông tại H có HM là đừog cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đừog cao

nên  \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

b: \(S_{ABC}=\dfrac{2\cdot5}{2}=5\left(cm^2\right)\)

Xét ΔAMN và ΔACB có

AM/AC=AN/AB

góc A chung

DO đó; ΔAMN đồg dạng với ΔACB

Suy ra: \(\dfrac{S_{AMN}}{S_{ACB}}=\left(\dfrac{MN}{CB}\right)^2=\dfrac{4}{25}\)

\(\Leftrightarrow S_{AMN}=\dfrac{4}{25}\cdot5=\dfrac{4}{5}\left(cm^2\right)\)

\(\Leftrightarrow S_{AMHN}=2\cdot S_{AMN}=\dfrac{8}{5}\left(cm^2\right)\)