K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2023

a: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>AH=EF

b: Ta có: ΔABH vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HA^2=6^2-3,6^2=23,04\)

=>\(HA=\sqrt{23,04}=4,8\left(cm\right)\)

Xét ΔHAB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\)

=>\(AE\cdot6=4,8^2=23,04\)

=>\(AE=\dfrac{23.04}{6}=3,84\left(cm\right)\)

AEHF là hình chữ nhật

=>AE=HF

mà AE=3,84cm

nên HF=3,84cm

loading...

22 tháng 12 2023

Các bạn vẽ giúp mik hình với nha

a: Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)

Do đó: ADHE là hình chữ nhật

b: BC=10cm

AH=4,8cm

BH=3,6cm

CH=6,4cm

20 tháng 5 2022

loading...  loading...  đánh giá tốt giúp mk vs ạ

AH
Akai Haruma
Giáo viên
20 tháng 12 2023

Lời giải:

a/ Tứ giác $AEHF$ có 3 góc vuông: $\widehat{A}=\widehat{E}=\widehat{F}=90^0$ nên là hình chữ nhật.

$\Rightarrow AH=EF$

b/ $HF=AE$ (do $AEHF$ là hcn) 

Xét tam giác $AEH$ và $AHB$ có:

$\widehat{A}$ chung

$\widehat{AEH}=\widehat{AHB}=90^0$

$\Rightarrow \triangle AEH\sim \triangle AHB$ (g.g)

$\Rightarrow \frac{AE}{AH}=\frac{AH}{AB}$

$\Rightarrow AE=\frac{AH^2}{AB}=\frac{AB^2-BH^2}{AB}=\frac{6^2-3,6^2}{6}=3,84$ (cm)

AH
Akai Haruma
Giáo viên
20 tháng 12 2023

Hình vẽ:

a: \(CB=\sqrt{12^2+16^2}=20\left(cm\right)\)

AH=12*16/20=9,6cm

Xet ΔABC có AD là phân giác

nên BD/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=20/7

=>BD=60/7cm; CD=80/7cm

b: Sửa đề: AB,AC

Xét tứ giác AMHN có

góc AMH=góc ANH=góc MAN=90 độ

=>AMHN là hình chữ nhật

AM=AH^2/AB=9,6^2/12=7,68(cm)

AN=AH^2/AC=9,6^2/16=5,76(cm)

\(S_{AMHN}=7.68\cdot5.76=44.2368\left(cm^2\right)\)

9 tháng 4 2023

giúp mik vs ạ

 

11 tháng 4 2023

xem lại đầu bài của bạn đúng chưa vậy? mình thấy sai sai

 

18 tháng 3 2022

Quá dễ

18 tháng 3 2022

195cm2 tik cho mình nha

22 tháng 8 2021

a/ - Do M và N là hình chiếu của H lên AB, AC \(\Rightarrow\hat{AMH}=\hat{ANH}=\hat{A}=90\text{°}\)

Vậy: AMHN là hình chữ nhật (đpcm) (Tứ giác có 3 góc vuông là hình chữ nhật)

==========

b/ Từ câu a \(\Rightarrow AH=MN\)

Cho AB=a, AC=b

Xét △AHB và △ABC có:

\(\hat{A}=\hat{AHB}=90\text{°}\)

\(\hat{B}\text{ }chung\)

⇒ △HBA ∽ △ABC (g.g)

\(\Rightarrow\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{ab}{16}\)

Vậy: \(MN=\dfrac{ab}{16}\)