Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H co
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
c) \(\widehat{AEF}=\widehat{EAH}=90^0-\widehat{ABH}=\widehat{ACB}\)
\(\Rightarrow\)△AFE∼△ABC (g-g)
\(\Rightarrow\dfrac{AF}{AB}=\dfrac{AE}{AC}\Rightarrow AB.AE=AC.AF\).
d) \(\widehat{CAM}=90^0-\widehat{AFE}=90^0-\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow\)△ACM cân tại M \(\Rightarrow MA=MC\left(1\right)\)
\(\widehat{BAM}=90^0-\widehat{AEF}=90^0-\widehat{ACB}=\widehat{ABC}\)
\(\Rightarrow\)△ABM cân tại M \(\Rightarrow MA=MB\left(2\right)\)
-Từ (1) và (2) suy ra: \(MB=MC\) nên M là trung điểm BC.
e) \(\dfrac{S_{AFE}}{S_{ABC}}=\left(\dfrac{EF}{BC}\right)^2\)
\(\Rightarrow\dfrac{\dfrac{1}{2}S_{AEHF}}{2S_{AEHF}}=\left(\dfrac{EF}{BC}\right)^2\)
\(\Rightarrow\dfrac{1}{4}=\left(\dfrac{EF}{BC}\right)^2\Rightarrow\dfrac{EF}{BC}=\dfrac{AH}{BC}=\dfrac{1}{2}\)
\(\Rightarrow H\equiv M\)
\(\Rightarrow\)△ABC vuông cân tại A.
Xét tam giác AEH và tam giác AHB, có:
\(\widehat{AHB}=\widehat{AEH}=90^0\)
\(\widehat{A}:chung\)
Vậy tam giác AEH đồng dạng tam giác AHB ( g.g )
a: Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
nên AEHF là hình chữ nhật
=>EF=AH
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
S=1/2*3*4=6(cm2)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
c: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
hay AD/AC=AE/AB
=>ΔADE\(\sim\)ΔACB
a:
BC=35cm
\(AH=\dfrac{AB\cdot AC}{BC}=16.8\left(cm\right)\)
b: \(AE=\dfrac{AH^2}{AC}=\dfrac{16.8^2}{28}=10.08\left(cm\right)\)
\(AD=\dfrac{AH^2}{AB}=\dfrac{16.8^2}{21}=13.44\left(cm\right)\)
Do đó: \(S_{AED}=\dfrac{AD\cdot AE}{2}=\dfrac{13.44\cdot10.08}{2}=67.7376\left(cm^2\right)\)
Giải: a) Ta có : \(S_{\Delta ABC}\)= \(\frac{AH.BC}{2}\) (1)
\(S_{\Delta ABC}\)= \(\frac{AB.AC}{2}\) (2)
Từ (1) và (2) suy ra \(\frac{AH.BC}{2}=\frac{AB.AC}{2}\) => AH.BC = AB.AC (Đpcm)
b) Xét t/giác ABC vuông tại A (áp dụng định lí Pi - ta - go)
Ta có: BC2 = AB2 + AC2 = 152 + 202 = 225 + 400 = 625
=> BC = 25
Ta có: AH.BC = AB.AC (cmt)
hay AH. 25 = 15.20
=> AH.25 = 300
=> AH = 300 : 25
=> AH = 12
c) chưa hc