K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\cdot\left(BH+9\right)=20^2\)

\(\Leftrightarrow BH^2+9BH-400=0\)

\(\Leftrightarrow BH^2+25BH-16BH-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AH^2=20^2-16^2=144\)

hay AH=12(cm)

3 tháng 9 2016

Áp dụng hệ thực giữa cạnh và đường cao trong tam giác vuông có:

\(AH^2=AB.BH\)

\(\Leftrightarrow20^2=BH\left(BH+9\right)\)

\(\Leftrightarrow BH^2+94H-400=0\)

\(\Rightarrow BH=16\left(cm\right)\)

Lại có: \(BC=BH+HC=16+9=25\left(cm\right)\)

\(\Rightarrow AH^2=BH.CH=16.9=12^2\)

\(\Rightarrow AH=12\left(cm\right)\)

3 tháng 9 2016

  Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ta có: 
AB^2=BH.BC 
<=>20^2=BH.(BH + 9) 
<=>BH^2 + 9BH-400=0 
=> BH=16cm 
Mà BC=BH + HC=16 + 9=25cm 
AH^2 = BH.HC = 16.9 = 12^2 
suy ra AH = 12cm.

Vậy AH=12cm.

24 tháng 5 2016

Đó là bài lớp 9 à lớp 7 thì có

24 tháng 5 2016

Gọi AC=a;BH=b

thì ta có hệ pt \(\sqrt{a^2+20^2}=9+b\)(pytago)

\(\frac{20a}{b+9}=\sqrt{9b}\)(hệ thức lượng trong tam giác vuông)

Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

nên BC=15(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=7,2\left(cm\right)\\BH=5.4\left(cm\right)\\CH=9.6\left(cm\right)\end{matrix}\right.\)

Câu 1: 

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{9^2}+\dfrac{1}{12^2}=\dfrac{1}{81}+\dfrac{1}{144}=\dfrac{25}{1296}\)

\(\Leftrightarrow AH^2=\dfrac{1296}{25}\)

hay \(AH=\dfrac{14}{5}=4.8cm\)

Vậy: AH=4,8cm

Câu 2: 

Ta có: BC=BH+CH(H nằm giữa B và C)

hay BC=5+6=11(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow AB^2=5\cdot11=55\)

hay \(AB=\sqrt{55}cm\)

Vậy: \(AB=\sqrt{55}cm\)

Câu 4:

Không có hàm số nào không phải là hàm số bậc nhất

NV
29 tháng 7 2021

\(HC-HB=9\Rightarrow HC=HB+9\)

Áp dụng hệ thức lượng:

\(AH^2=HB.HC\Leftrightarrow6^2=HB\left(HB+9\right)\)

\(\Leftrightarrow HB^2+9HB-36=0\Rightarrow\left[{}\begin{matrix}HB=3\\HB=-12\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow HC=HB+9=12\)

Ta có: HC-HB=9

nên HC=9+HB

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB^2+9HB-36=0\)

\(\Leftrightarrow\left(HB+12\right)\left(HB-3\right)=0\)

\(\Leftrightarrow HB=3\left(cm\right)\)

\(\Leftrightarrow HC=12\left(cm\right)\)

DB/DC=AB/DC

DB+DC=BC

=>DB=5-20=-15 là sai đề rồi bạn