Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình bạn tự vẽ
a) Xét ΔHBA và ΔABC có :
^H = ^A = 900
^B chung
=> ΔHBA ~ ΔABC (g.g)
b) Vì ΔHBA vuông tại H, áp dụng định lí Pythagoras ta có :
AB2 = BH2 + AH2
=> BH = √(AB2 - AH2) = √(152 - 122) = 9cm
Vì ΔHBA ~ ΔABC (cmt) => HB/AB = BA/BC = HA/AC
=> BC = AB2/HB = 152/9 = 25cm
Ta có BC = BH + HC => HC = BC - BH = 25 - 9 = 16cm
=> SAHC = 1/2AH.HC = 1/2.12.16 = 96cm2
c) mình chưa nghĩ ra :v
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA∼ΔABC(g-g)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
=>góc HAB=góc ACB
b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
góc HAB=góc HCA
=>ΔHAB đồng dạng với ΔHCA
=>HA/HC=HB/HA
=>HA^2=HB*HC
c: BC=căn 15^2+20^2=25cm
BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=(AD+CD)/(3+5)=20/8=2,5
=>AD=7,5cm
BD=căn 15^2+7,5^2=15/2*căn 5(cm)
Sao ý A nhiều ng bảo ko làm đc nhỉ???
Ta chỉ cần dùng tính chất bắc cầu là ra mà
a:Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng vớiΔHBA
b: ΔACB vuông tại A có AH là đường cao
nên AH^2=HB*HC
Chứng minh câu a)
Ta có: AH vuông góc với BC ( giả thiết)
=> góc H = 1v
Xét tam giác AHC và tam giác BHA có:
góc AHC=AHB=90 độ
góc B=góc C=45 độ
=>2 tam giác đồng dạng
Câu b)
*BC=?
Ta có tam giác ABC vuông tại A( theo giả thiết0
Theo định lí pi ta go, ta có :
BC^2=AC^2+AB^2=400+225=625
=>BC=25
*AH=?
S tam giác ABC=1/2.AB.AC hoặc 1/2BC.AH
=>AB.AC=BC.AH =>AB/BC=AH/AC
=>AH=15.20/25=12
Câu c)mk ko piet giai nha sorry nha
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow BC^2=15^2+20^2=625\)
hay BC=25(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot25=15\cdot20\)
\(\Leftrightarrow AH\cdot25=300\)
hay AH=12(cm)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
\(\Leftrightarrow CH^2=AC^2-AH^2=20^2-12^2=256\)
hay HC=16(cm)
Vậy: BC=20cm; AH=12cm; HC=16cm
a. tg AHC ~ tg BHA ( g-g)
b. BC= 25
AH= 12
c. MN là đường trung bình của tg HBA nên MN // AB (1)
mặt khác AB vuông AC (2)
1,2 ---> MN vuông AC
Tam giác MAC có MN vuông AC, AH vuông MC ---> N là trực tâm
do đó CN vuông AM (đpcm)
A H B C 15 20 12 M N
a, Xét tam giác ABC và tam giác HBA ta có
^B chung
^BAC = ^BHA = 900
Vậy tam giác ABC ~ tam giác HBA ( g.g )
b, Vì tam giác ABC ~ tam giác HBA ( cma )
\(\Rightarrow\frac{AB}{HB}=\frac{AC}{AH}\)( tỉ số đồng dạng )
\(\Rightarrow HB=\frac{AB.AH}{AC}=\frac{15.12}{20}=9\)cm
c, Ta có :
M là trung điểm BH => \(BM=MH=\frac{BH}{2}=\frac{9}{2}=4,5\)cm
N là trung điểm AH => \(AN=NH=\frac{AH}{2}=\frac{12}{2}=6\)cm
Kết hợp với giả thiết ta có : \(AC.BM=AB.AN\Rightarrow20.4,5=15.6\)* đúng *
Vậy ta có đpcm