K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2023

c: Xét ΔAHB vuông tại H có \(cosB=\dfrac{BH}{BA}\)

Xét ΔHMB vuông tại M có \(cosB=\dfrac{MB}{BH}\)

Xét ΔABC vuông tại A có \(\left\{{}\begin{matrix}cosB=\dfrac{BA}{BC}\\cosC=\dfrac{AC}{BC}\end{matrix}\right.\)

Xét ΔCKH vuông tại K có \(cosC=\dfrac{CK}{CH}\)

Xét ΔCHA vuông tại H có \(cosC=\dfrac{CH}{CA}\)

\(cos^3C=cosC\cdot cosC\cdot cosC\)

\(=\dfrac{CA}{CB}\cdot\dfrac{CK}{CH}\cdot\dfrac{CH}{CA}=\dfrac{CK}{CB}\)

=>\(CK=CB\cdot cos^3C\)

\(cos^3B=cosB\cdot cosB\cdot cosB\)

\(=\dfrac{BH}{BA}\cdot\dfrac{MB}{BH}\cdot\dfrac{BA}{BC}=\dfrac{MB}{BC}\)

=>\(MB=BC\cdot cos^3B\)

\(BM+CK\)

\(=BC\cdot cos^3B+BC\cdot cos^3C\)

\(=BC\left(cos^3B+cos^3C\right)\)

22 tháng 10 2021

b: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

22 tháng 10 2021

bạn ơi còn câu a với câu c đâu ạ ?

31 tháng 10

Có cái nịt

 

23 tháng 10 2023

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=10^2-6^2=64\)

=>AC=8(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AH=\dfrac{6\cdot8}{10}=4,8\left(cm\right)\\BH=\dfrac{6^2}{10}=3,6\left(cm\right)\end{matrix}\right.\)

b: ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra AE*AB=AF*AC

=>AE/AC=AF/AB

Xét ΔAEF vuông tại A và ΔACB vuông tại A có

AE/AC=AF/AB

Do đó: ΔAEF đồng dạng với ΔACB

c: Xét ΔBAC có BD là phân giác

nên \(\dfrac{AD}{AB}=\dfrac{CD}{CB}\)

=>\(\dfrac{AB}{AD}=\dfrac{CB}{CD}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AB}{AD}=\dfrac{CB}{CD}=\dfrac{AB+BC}{AD+CD}=\dfrac{AB+BC}{AC}\)(1)

ΔBAD vuông tại A có

\(cotABD=\dfrac{AB}{AD}\)(2)

BD là phân giác của góc ABC

=>\(\widehat{ABD}=\widehat{DBC}\left(3\right)\)

Từ (1),(2),(3) suy ra \(cotDBC=\dfrac{AB+BC}{AC}\)

3 tháng 8 2023

a) Ta có:
- Gọi M là trung điểm của AC.
- Vì I là trung điểm của BC nên IM = MC.
- Vì I là trung điểm của BC nên BI = IC.
- Vì I là trung điểm của BC nên BM = MC.
- Vì I là trung điểm của BC nên MI song song với AH (do M là trung điểm của AC và I là trung điểm của BC).
- Vì MI song song với AH và IM = MC nên AH vuông góc với BC (do đường cao BD và CE cắt nhau tại H).

b) Ta có:
- K là điểm đối xứng của H qua I nên KH = HI.
- Vì KH = HI nên tam giác KHI là tam giác cân tại K.
- Vì KH = HI nên tam giác KHI là tam giác vuông tại K.
- Vì KH = HI nên tam giác KHI là tam giác đều.
- Vì tam giác KHI là tam giác đều nên góc HKI = 60 độ.
- Vì góc HKI = 60 độ nên góc BKH = 60 độ.
- Vì góc BKH = 60 độ nên tam giác ABK là tam giác vuông tại B.

c) Ta có:
- Vì CK // BD nên góc BCK = góc CBD.
- Vì CK // BD nên góc BKC = góc BDC.
- Vì góc BCK = góc CBD và góc BKC = góc BDC nên tam giác BCK và tam giác BDC có cặp góc tương đương.
- Vì tam giác BCK và tam giác BDC có cặp góc tương đương nên chúng tương đồng.
- Vì tam giác BCK và tam giác BDC tương đồng nên tỉ số đồng dạng giữa chúng là: BC/BD = BK/BD.
- Vì BC/BD = BK/BD nên BC = BK.
- Vì BC = BK nên tam giác ABK là tam giác cân tại B.
- Vì tam giác ABK là tam giác cân tại B nên BE = BA.

d) Ta có:
- Vì M là trung điểm của AC nên BM = MC.
- Vì DM vuông góc với BC nên góc BDM = 90 độ.
- Vì DM vuông góc với BC nên góc DMC = 90 độ.
- Vì góc BDM = 90 độ và góc DMC = 90 độ nên tam giác BDM và tam giác DMC là tam giác vuông tại D.
- Vì tam giác BDM và tam giác DMC là tam giác vuông tại D nên chúng tương đồng.
- Vì tam giác BDM và tam giác DMC tương đồng nên tỉ số đồng dạng giữa chúng là: BD/DM = DM/DC.
- Vì BD/DM = DM/DC nên BD.DC = DM^2.
- Vì BD.DC = DM^2 nên BD.DC - MC^2 = DM^2 - MC^2.
- Vì BD.DC - MC^2 = DM^2 - MC^2 nên MB.MC = DM^2 - MC^2.

a: Xét ΔABH vuông tại H có HF là đường cao ứng với cạnh huyền AB

nên \(AF\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HE là đường cao ứng với cạnh huyền AC

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AF\cdot AB=AE\cdot AC\)

16 tháng 10 2023

a: BC=BH+CH

=4+9=13

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH^2=4\cdot9=36\)

=>AH=6

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{4\cdot13}=2\sqrt{13}\\AC=\sqrt{9\cdot13}=3\sqrt{13}\end{matrix}\right.\)

b: ΔHAB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

ΔHAC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1), (2) suy ra \(AM\cdot AB=AN\cdot AC\)

16 tháng 10 2023

Có hình vẽ ko ạ

16 tháng 7 2020

+) Đặt: AB = AC = a 

=> BC = a\(\sqrt{2}\)

D là trung điểm của AC  -> AD = DC = a/2

=> BD = \(\frac{\sqrt{5}}{2}\)a ( pitago cho tam giác ABD vuông tại A ) 

+) \(\Delta\)ABD ~ \(\Delta\)ICD ( tự chứng minh ) 

=> \(\frac{AD}{DI}=\frac{BD}{CD}\Rightarrow\frac{\frac{a}{2}}{DI}=\frac{\frac{\sqrt{5}a}{2}}{\frac{a}{2}}\Rightarrow DI=\frac{a}{2\sqrt{5}}\)

+) \(\Delta\)DIC vuông tại I có IH là đường cao đáy DC

=> \(DI^2=DH.DC\Rightarrow DH=\frac{\frac{a^2}{4.5}}{\frac{a}{2}}=\frac{a}{10}\)=> AH = AD + DH = a/2 + a/10 = 3/5 (1)

\(IH^2=DI^2-DH^2=\frac{a^2}{20}-\frac{a^2}{100}=\frac{a^2}{25}\)=> IH = a/5 (2) 

Từ (1) và (2) => AH = 3 IH

16 tháng 7 2020

Cho cái hình, mới hc lp 8, ko bt lm

A B C D I H