Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=15-5,4=9,6(cm)
b) Ta có: BH+CH=BC(H nằm giữa B và C)
nên BC=1+3=4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)
a. Xét ΔABC ( \(\widehat{BAC}=90^o\) ) theo hệ thức lượng ta có:
AC2 = HC . BC => HC = \(\frac{AC^2}{BC}\)= \(\frac{6^2}{12}\)= 3cm
=> BH = BC - HC = 12 - 3 = 9cm
b. Xét ΔABC ( \(\widehat{BAC}=90^o\) ) theo hệ thức lượng ta có:
AH2 = BH . HC = 2 . 5 = 10 => AH = \(\sqrt{10}\)cm
Xét ΔABH và ΔACH \(\left(\widehat{H}=90^o\right)\)theo định lí py - ta - go ta có:
\(AB=\sqrt{BH^2+AH^2}=\sqrt{2^2+\sqrt{10}^2}=\sqrt{14}cm\)
\(AC=\sqrt{HC^2+AH^2}=\sqrt{5^2+\sqrt{10^2}}=\sqrt{35}cm\)
c. Xét ΔAHC \(\left(\widehat{AHC}=90^o\right)\)theo định lí py - ta - go ta có:
\(AC=\sqrt{HC^2+AH^2}=\sqrt{3^2+4^2}=5cm\)
Xét ΔABC ( \(\widehat{BAC}=90^o\) ) theo hệ thức lượng ta có:
\(AH^2=HC.BH=>BH=\frac{AH^2}{HC}=\frac{4^2}{3}=\frac{16}{3}cm\)
\(AB=\sqrt{BH^2+AH^2}=\sqrt{\left(\frac{16}{3}\right)^2+4^2}=\frac{20}{3}cm\)
d. Ta có: \(\frac{AB}{AC}=\frac{3}{4}=>4AB=3AC< =>4.6=3AC< =>24=3AC< =>AC=8cm\)
Xét ΔABC ( \(\widehat{BAC}=90^o\) ) theo định lí py - ta - go ta có:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10cm\)
Xét ΔABC ( \(\widehat{BAC}=90^o\) ) theo hệ thức lượng ta có:\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{6^2}+\frac{1}{8^2}=\frac{25}{576}=>AH^2=\frac{576}{25}=23.04=>AH=\sqrt{23.04}=4,8cm\)
Xét ΔABH \(\left(\widehat{H}=90^o\right)\)theo định lí py - ta - go ta có:
\(BH=\sqrt{AB^2-AH^2}=\sqrt{6^2-4.8^2}=3,6cm\)
=> HC = BC - BH = 10 - 3,6 = 6,4cm
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
A B C H
a) ÁP dụng Pytago ta có: AH2 + HB2 = AB2
=> AB2 = 62 + 4,52 =56,25
=> AB = 7,5
Áp dụng hệ thức lượng ta có: AB2 = BH.BC
=> \(BC=\frac{AB^2}{BH}=12,5\)
=> \(HC=BC-BH=12,5-4,5=8\)
Áp dụng hệ thức lượng ta có:
\(AC^2=HC.BC\)
=> \(AC=\sqrt{HC.BC}=10\)
c, Ta có AB/AC=3/4
=> AB=3*AC/4
Áp dụng định lí pytago trong tam giác ABC ta có
AB^2+AC^2=BC^2
<=>(3AC/4)^2+AC^2=100
<=>9/16AC^2+AC^2=100
=>25/16AC^2=100
=>AC^2=64
=>AC=8 cm
a,Áp dụng định lí pytago trong tam giác ta có:
AB^2+AC^2=BC^2
<=> 3^2+4^2=BC^2
<=> BC^2=9+16=25
=> BC=5 cm
Áp dụng hệ thức lượng trong tam giác vuông có:
AB^2=BC*BH
=> BH=AB^2/BC=3^2/5=1.8 cm