Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
$AB.AC=AH.BC=40$
$AB^2+AC^2=BC^2=100$
$\Rightarrow (AB+AC)^2=AB^2+AC^2+2AB.AC=180$
$\Rightarrow AB+AC=6\sqrt{5}$
Theo định lý Viet đảo, $AB,AC$ là nghiệm của pt $X^2-6\sqrt{5}X+40=0$
$\Rightarrow AB=4\sqrt{5}; AC=2\sqrt{5}$ (giả sử $AB>AC$)
Dễ thấy $AIHK$ là hình chữ nhật do có 3 góc vuông $\widehat{A}=\widehat{I}=\widehat{K}=90^0$
$\Rightarrow IK=AH=4$
Theo định lý Pitago: $AI^2+AK^2=IK^2=16(1)$
Mặt khác, theo hệ thức lượng trong tam giác vuông:
$AI.AB=AH^2$
$AK.AC=AH^2$
$\Rightarrow AI.AB=AK.AC\Rightarrow \frac{AI}{AK}=\frac{AC}{AB}=\frac{2\sqrt{5}}{4\sqrt{5}}=\frac{1}{2}(2)$
Từ $(1);(2)\Rightarrow AI=\frac{4\sqrt{5}}{5}; AK=\frac{8\sqrt{5}}{5}$ (cm)
Chu vi AIHK:
$P=2(AI+AK)=2(\frac{4\sqrt{5}}{5}+\frac{8\sqrt{5}}{5})=\frac{24\sqrt{5}}{5}$ (cm)
Diện tích AIHK:
$S=AI.AK=\frac{4\sqrt{5}}{5}.\frac{8\sqrt{5}}{5}=6,4$ (cm vuông)
a) \(S_{ABC}=\dfrac{1}{2}.AH.BC=\dfrac{1}{2}.6.10=30\left(cm^2\right)\)
b) Xét \(\Delta ABH\) và \(\Delta CBA:\) Ta có: \(\left\{{}\begin{matrix}\angle ABCchung\\\angle AHB=\angle CAB=90\end{matrix}\right.\)
\(\Rightarrow\Delta ABH\sim\Delta CBA\left(g-g\right)\)
c) \(\Delta ABH\sim\Delta CBA\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\Rightarrow AH.BC=AB.AC\)
Lời giải:
$S_{ABC}=\frac{AH.BC}{2}=\frac{\frac{24}{5}.10}{2}=24$ (cm vuông)
\(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{\dfrac{24}{5}\cdot10}{2}=\dfrac{24}{5}\cdot5=24\left(cm^2\right)\)
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=15^2-9^2=144\)
hay AC=12(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\\CH=\dfrac{12^2}{15}=\dfrac{144}{15}=9,6\left(cm\right)\end{matrix}\right.\)
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AH^2+HB^2=AB^2\)
\(\Leftrightarrow AH^2=9^2-5.4^2=51,84\)
hay AH=7,2(cm)
\(\tan B=\sqrt{2}\Leftrightarrow\dfrac{\sin B}{\cos B}=\sqrt{2}\Leftrightarrow\sin B=\sqrt{2}\cos B\\ \sin^2B+\cos^2B=1\Leftrightarrow3\cos^2B=1\\ \Leftrightarrow\cos B=\sqrt{\dfrac{1}{3}}=\dfrac{\sqrt{3}}{3}\\ \Leftrightarrow\sin B=\dfrac{\sqrt{6}}{3}\\ \Leftrightarrow\left\{{}\begin{matrix}\sin C=\cos B=\dfrac{\sqrt{3}}{3}\\\cos C=\sin B=\dfrac{\sqrt{6}}{3}\end{matrix}\right.\\ \cot C=\tan B=\sqrt{3};\tan C=\dfrac{1}{\cot C}=\dfrac{\sqrt{3}}{3}\)
Áp dụng định lý Pytago trong tam giác ABH vuông tại H. Ta có:
Trong tam giác vuông ABC vuông tại A có AH là đường cao
Áp dụng định lý Py-ta-go cho tam giác vuông ABC ta có:
Vậy AC = 7,5 (cm); BC = 12,5 (cm)
Đáp án cần chọn là: B
Xét △ABC vuông tại A có:
\(\tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{3}{4}\Rightarrow AC=\dfrac{3}{4}AB\)
Lại có: \(AB^2+AC^2=BC^2=10^2=100\)
\(\Rightarrow AB^2+\left(\dfrac{3}{4}AB\right)^2=100\)
\(\Rightarrow\dfrac{25}{16}AB^2=100\Rightarrow AB^2=64\Rightarrow AB=8\left(cm\right)\)
\(\Rightarrow AC=\dfrac{3}{4}AB=\dfrac{3}{4}.8=6\left(cm\right)\)
\(P_{ABC}=AB+BC+CA=6+10+8=24\left(cm\right)\)