K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2023

Để giải bài toán này, ta có thể sử dụng các định lý và tính chất trong hình học Euclid. Dưới đây là cách chứng minh cho từng phần:

a) Chứng minh tam giác AIB = tam giác AIC:

Ta có AB = AC (do đề bài cho)IA = IA (do cùng là một đoạn)IB = IC (do I là trung điểm của BC)Vậy tam giác AIB và tam giác AIC bằng nhau theo nguyên lý cạnh - cạnh - cạnh.

b) Chứng minh AI là tia phân giác của góc BAC:

Do tam giác AIB = tam giác AIC nên ∠BAI = ∠CAIVậy AI là tia phân giác của góc BAC.

c) Chứng minh IA là tia phân giác của góc HIK:

Do IH vuông góc AB và IK vuông góc AC nên ∠HIK = 90° + ∠BACMà AI là tia phân giác của góc BAC nên ∠HIA = ∠KIA = 1/2 ∠BACVậy ∠HIA + ∠KIA = ∠HIKVậy IA là tia phân giác của góc HIK.

a: Xét ΔAIB và ΔAIC có

AB=AC

IB=IC

AI chung

Do đó: ΔAIB=ΔAIC

b: ΔAIB=ΔAIC

=>\(\widehat{BAI}=\widehat{CAI}\)

=>AI là phân giác của \(\widehat{BAC}\)

c: Xét ΔAIH vuông tại H và ΔAIK vuông tại K có

AI chung

\(\widehat{HAI}=\widehat{KAI}\)

Do đó: ΔAIH=ΔAIK

=>\(\widehat{HIA}=\widehat{KIA}\)

=>IA là phân giác của \(\widehat{HIK}\)

16 tháng 1 2022

undefined

\(\text{a)}\text{Xét }\Delta ABI\text{ và }\Delta ACI\text{ có:}\)

\(AB=AC\left(gt\right)\)

\(BI=CI\text{(I trung điểm BC)}\)

\(AI\text{ chung}\)

\(\Rightarrow\Delta ABI=\Delta ACI\left(c.c.c\right)\)

\(\text{b)Xét }\Delta AIC\text{ và }\Delta DIB\text{ có:}\)

\(AI=DI\left(gt\right)\)

\(\widehat{AIC}=\widehat{DIB}\text{(đối đỉnh)}\)

\(IC=IB\)

\(\Rightarrow\Delta AIC=\Delta DIB\left(c.g.c\right)\)

\(\Rightarrow\widehat{DIB}=\widehat{ICA}\text{(2 góc tương ứng)}\)

\(\text{mà chúng so le trong}\)

\(\Rightarrow AC=BD\)

\(\text{c)Xét }\Delta IKB\text{ và }\Delta IHC\text{ có:}\)

\(\widehat{IKB}=\widehat{IHC}=90^0\)

\(IB=IC\)

\(\widehat{KIB}=\widehat{CIH}\text{(đối đỉnh)}\)

\(\Rightarrow\Delta IKB=\Delta IHC\left(ch-gn\right)\)

\(\Rightarrow IK=IH\)

\(\text{Hình có chỗ nào bạn ko thấy rõ thì ib riêng cho mik nghe:3}\)

5 tháng 5 2022
 

Trong tam giác ABC có:

∠A + ∠(ABC) + ∠(ACB) = 180o ⇒ ∠(ABC) + ∠(ACB) = 180o - 80o = 100o

Mà BI và CI lâ các tia phân giác nên

∠(ABC) + ∠(ACB) = 2.∠(IBC) + 2.∠(ICB) = 2 (∠(IBC) + ∠(ICB) )

Suy ra ∠(IBC) + ∠(ICB) = 50o

Mà ∠(IBC) + ∠(ICB) + ∠(BIC) = 180o ⇒ ∠(BIC) = 130o.

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )a,chứng minh rằng IA=IBb, Tính độ dài ICc, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IKBài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AEa, chứng minh rằng BE=CDb, chứng minh rằng góc ABE bằng góc ACDc, Gọi K là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )

a,chứng minh rằng IA=IB

b, Tính độ dài IC

c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK

Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE

a, chứng minh rằng BE=CD

b, chứng minh rằng góc ABE bằng góc ACD

c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?

Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:

a, AC=AK và AE vuông góc CK

b,KB=KA

c, EB > AC

d, ba đường AC,BD,KE cùng đi qua 1 điểm

Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:

a, tam giác ABE=tam giác ADC

b,góc BMC=120°

Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh

a,AK=KB

b, AD=BC

2
12 tháng 5 2019

C1 :

Hình : tự vẽ 

a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C

                                       mà CI vuông góc vs AB => CI là đường cao của tam giác ABC 

=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )

=> IA=IB (đpcm)

12 tháng 5 2019

C1 : 

b) Có IA=IB ( cm phần a ) 

mà IA+IB = AB 

      IA + IA = 12 (cm)

=> IA = \(\frac{12}{2}=6\left(cm\right)\)

Xét tam giác vuông CIA có :     CI2  +   IA2  = CA2  ( Đ/l Py-ta -go )

                                                   CI2 +  62     = 102

                                                          CI2       = 102  - 6= 64

=> CI = \(\sqrt{64}=8\left(cm\right)\)

Vậy CI ( hay IC ) = 8cm

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC

1
22 tháng 11 2019

1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath

7 tháng 12 2016

Ta có hình vẽ:

A B C I H K

a/ Xét tam giác AIB và tam giác AIC có:

BI = IC (GT)

\(\widehat{AIB}\)=\(\widehat{AIC}\) (AI là đường trung trực của BC)

AI : cạnh chung

Vậy tam giác AIB = tam giác AIC (c.g.c)

b/ Ta có: tam giác AIB = tam giác AIC (câu a)

=> \(\widehat{BAI}\)=\(\widehat{CAI}\) (2 góc tương ứng)

=> AI là phân giác \(\widehat{BAC}\) (đpcm)

c/

*Cách 1:

Xét tam giác AHI và tam giác AKI có:

\(\widehat{AHI}\)=\(\widehat{AKI}\) = 900

AI: cạnh chung

\(\widehat{HAI}\)=\(\widehat{KAI}\) (đã chứng minh)

Vậy tam giác AHI = tam giác AKI

(theo trường hợp cạnh huyền góc nhọn)

=> IH = IK (2 cạnh tương ứng)

*Cách 2:

Xét tam giác BHI và tam giác CKI có:

\(\widehat{B}\)=\(\widehat{C}\) (vì tam giác AIB = tam giác AIC)

BI = IC (GT)

\(\widehat{BHI}\)=\(\widehat{CKI}\)=900

Vậy tam giác BHI = tam giác CKI

(theo trường hợp cạnh huyền góc nhọn)

=> IH = IK (2 cạnh tương ứng)

Ở đây mình làm 2 cách nhưng khi vào làm bài bạn viết 1 cách thôi nhé, bạn chọn cách nào dễ hiểu mà làm...^^