Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
a)Xét \(\Delta AID\)và \(\Delta AIH\)có :
ID = IH ( I là trung điểm của DH )
IA là cạnh chung
=> \(\Delta AID=\Delta AIH\) ( cạnh góc vuông - cạnh góc vuông )
A) Xét tam giác ABH và tam giác ADH có :
HB=HD ( giả thiết)
HA ( cạnh chung)
góc DHA=góc BHA=90độ
suy ra tam giác ABH=tam giác ADH ( C-G-C)
B)Xét tam giác EHD và tam giác BHAcó:
HE=HA( GT)
góc AHB=góc DHE(hai góc đối đỉnh )
HD=HB( GT)
vậy suy ra : tam giácBHA= tam giác EHD( C-G-C)
vậy BA=ED( hai cạnh tương ứng)
C)ta gọi giao điểm của ED và AC là I
ta có góc IEA = góc EAB( hai góc tương ứng)
mà hai góc này lại ở
vị trí sole trong ở hai đoạn thẳng BA và EI
suy ra : BAsong song với EI
mà ta lại có góc BAI = 90 độ mà lại bù nhau với góc EIA vậy góc EIA =180 độ - 90 độ =90 độ
vậy EI vuong góc với AC
Ta có: EA = EC
FB=FC
=> FC/EC=FB/EA Theo Talét đảo => AE//BF 2.C = 45 độ
=> ABC là tam giác vuông cân tại A
Xét tam giác vuông BAF có BF^2=BA^2+AF^2=5BA^2 (1)
Dễ thấy AD là đường cao tam giác vuông cân ABC nên AD = BD =AB /2
AE = BC = AB căn2, pitago vào tam giác vuông EDB
=> BE2 = 5AB2 (2)
Từ (1) và (2)suy ra BE=BF
Vậy vuông góc chứng minh BEF =45 độ
Giải :
Có EA=EC
FB=FC
SUY RA FC/EC=FB/EA
theo Talét đảo suy ra AE//BF
2.C = 45 độ suy ra ABC là tam giác vuông cân tại A
XÉT tam giác vuông BAF có BF^2=BA^2+AF^2=5BA^2 (1)
Dễ thấy AD là đường cao tam giác vuông cân ABC nên AD=BD=ABcăn2/2
AE=BC=ABcăn2, pitago vào tam giác vuông EDB suy ra BE^2=5AB^2 (2)
Từ (1) và (2)suy ra BE=BF
CÁi vuông góc chứng minh BEF =45 độ
Góc BEC = 50 độ
Tớ kẻ hình ra, thấy HK // EC chứ ko phải HK // BC.