K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2

a,  Xét tg ABH và tg ADH có : 

       BH=DH(gt)

       AH chung 

        ∠AHB=∠AHC (=90 độ)

=> tg ABH = tg ADH ( c.g.c) 

=> AB = AB ( 2 cạnh tương ứng ) 

=>  tg ABD cân (1) 

Trong tg ABC có : ∠A+∠B+∠C= 180 độ

=> 1/2∠B+∠B=90 độ 

=> ∠B= 60 độ (2) 

Từ (1) , (2) => tg ABD là tg đều 

b, +) Ta có : ∠BAD + ∠DAC = ∠BAC

=> 60 độ + ∠DAC = 90 độ

=>∠DAC = 30 độ

Lại có :  ∠DCA = 90 độ - 60 độ = 30 độ (3)

=> ∠DAC = ∠DCA ( =30 độ ) 

=> tg DAC cân tại D => AD=CD 

+) Xét tg HDA và tg EDC có : 

AD=CD(cmt)

 ∠HDA= ∠EDC ( đđ')

=> tg HDA = tg EDC ( ch-gn) 

=> DH=DE( 2 cạnh tương ứng ) 

=> tg DHE cân tại D

+)Lại có : ∠ADC= 180 độ -  ∠DAC -∠DCA= 120 độ

=>∠ADC=∠HDE(=120 độ)

=> ∠DHE = 180 - 120/2 = 30 (4)

Từ (3),(4)=> ∠DCA= ∠DHE

Mà chúng ở vị trí SLT => HE//AC

2 tháng 4 2022

...

2 tháng 5 2022

có ai bt ko giúp vs ạ

 

 

a:

a: Xet ΔAHB vuông tại H và ΔAHD vuông tại H có

AH chung

HB=HD

=>ΔAHB=ΔAHD

b: Xét ΔABD có

AB=AD

góc B=60 độ

=>ΔABD đều

c: Xét ΔDAC có góc DAC=góc DCA

nên ΔDAC cân tại D

=>DA=DC

Xét ΔDHA vuông tại H và ΔDEC vuông tại E có

DA=DC

góc HDA=góc EDC

=>ΔDHA=ΔDEC

=>DH=DE

16 tháng 8 2020

a) Xét \(\Delta ABC\)có :

AH là đường cao đồng thời là đường trung trực( AH \(\perp\)BD , BH = HD )

\(\Rightarrow\)\(\Delta ABC\)cân tại A

a: ΔABC vuông tại A

b: góc B=2/3*90=60 độ

góc C=90-60=30 độ

Xét ΔABD có

AH vừa là đường cao, vừa là trung tuyến

góc B=60 độ

=>ΔABD đều

=>góc DAB=60 độ

=>góc DAC=góc DCA

=>DA=DC

Xét ΔDHA vuông tại H và ΔDEC vuông tại E có

DA=DC

góc ADH=góc CDE

=>ΔDHA=ΔDEC

=>DH=DE