Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giac AMBK có
I là trung điểm của AB
I làtrung điểm của MK
Do đó:AMBK là hình bình hành
mà MA=MB
nên AMBK là hình thoi
b: Xét tứ giác AKMC có
AK//MC
AC//MK
Do đó: AKMC là hình bình hành
c: Để AMBK là hình vuông thì AM\(\perp\)BM
=>ΔABC cân tại A
=>AB=AC
a: Xét tứ giác AMBK có
I là trung điểm của BA
I là trung điểm của MK
Do đó:AMBK là hình bình hành
mà MA=MB
nên AMBK là hình thoi
b: Xét tứ giác AKMC có
MK//AC
MK=AC
Do đó: AKMC là hình bình hành
c: Để AMBK là hình vuông thì AM⊥BM
=>AM\(\perp\)BC
hay ΔABC vuông cân tại A
a)
▲BDE có
N là trung điểm DE (gt)
I là trung điểm BE (gt)
⇒NI là đường trung bình của tam giác BDE
⇒NI = 1/2 BD (1)
▲DEC có
K là trung điểm CD (gt)
N là trung điểm DE (gt)
⇒ NK là đường trung bình
⇒ NK = 1/2 CE (2)
▲BEC có
I là trung điểm BE (gt)
Mlà trung điểm BC (gt)
⇒MI là đường trung bình
⇒ MI = 1/2 CE (3) ,MI//CE
▲BDC có
K là trung điểm CD (gt)
M là trung điểm BC (gt)
⇒ MK là đường trung bình
⇒ MK = 1/2 BD (4) , MK//BD
Có (1)(2)(3)và (4) với BD=CE (gt)
⇒ NI=NK=MK=MI
⇒ MINK là hình thoi
b)
Có MK//BD (cmt)
⇒ \(\widehat {KMN}=\widehat {BHM} \) ( 2 góc SLT)
Có MI//CE (cmt)
⇒ \(\widehat {IMN}=\widehat {CGM}\) ( 2 góc SLT)
Có \(\widehat {KMN}=\widehat {IMN}\) ( MINK là hình thoi)
⇒ \(\widehat {BHM}=\widehat {CGM}\)
▲HAG có
\(\widehat {HAG}+\widehat {AHG}+\widehat {AGH} =180 độ\)
mà \(\widehat {CGM}=\widehat {AGH}\)
⇒\(\widehat {HAG}+2\widehat {CGM}\) = 180 độ
⇒ \(2\widehat {CGM}= 180 độ - \widehat {HAG}\)
Có \(\widehat {HAG}+\widehat {BAC}\) = 180 độ (2 góc kề bù)
⇒\(\widehat {BAC}= 180 độ -\widehat {HAG}\)
⇒ \(2\widehat {CGM} = \widehat {BAC}\)
mà At là tia phân giác góc BAC
⇒ \(2\widehat {CGM} = 2\widehat {CAt}\)
⇒ \(\widehat {CGM } = \widehat {CAt}\)
⇒ GM//At ( 2 góc Đồng vị)
Có MN⊥IK ( 2 đường chéo của hình thoi MINK) hay GM ⊥IK
⇒ At⊥IK