K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2016

hình bạn tự vẽ nhan

câu a:xét tam giác ABC vuông tại A có BC^2=AB^2+AC^2=>BC^2=15^2=>BC=15

mà AM là trung tuyến hạ từ A của tam giác ABC nên AM=BC/2=15/2

câu b:ta có góc BAC=90 độ (giả thuyết);góc MEA=90 độ(gt);góc MFA=90độ(gt)

nên AEMF là hình chữ nhật 

câu c:vì AEMF là hình chữ nhật (câu b)nên AM=EF nên EF=15/2

k minh nhan

a: BC=15cm

=>AM=7,5cm

b: Xét tứ giác AEMF có góc AEM=góc AFM=góc FAE=90 độ

nên AEMF là hình chữ nhật

a: Xét tứ giác AEMF có

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

=>AEMF là hình chữ nhật

b: ta có: MF\(\perp\)AC

AB\(\perp\)AC

Do đó: MF//AB

Xét ΔABC có

M là trung điểm của BC

MF//AB

Do đó: F là trung điểm của AC

a: Xét tứ giác AEMF có 

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

Do đó: AEMF là hình chữ nhật

b: Xét ΔABC có 

M là trung điểm của BC

ME//AC

Do đó: E là trung điểm của AB

=>AE=3cm

Xét ΔABC có

M là trung điểm của BC

MF//AB

Do đó: F là trung điểm của AC

=>AF=4cm

\(S_{AEMF}=AE\cdot AF=3\cdot4=12\left(cm^2\right)\)

c: Xét tứ giác ABNC có

M là trung điểm của BC

M là trung điểm của AN

Do đó: ABNC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABNC là hình chữ nhật

7 tháng 1 2022

Cảm ơn bạn nha^^

16 tháng 11 2021

a: Xét tứ giác AEMF có

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

Do đó: AEMF là hình chữ nhật

Suy ra: AM=EF

hay EF=5cm

20 tháng 12 2020

a) Xét tứ giác AEMF có 

\(\widehat{EAF}=90^0\)(\(\widehat{BAC}=90^0\), E∈AB, F∈AC)

\(\widehat{AEM}=90^0\)(ME⊥AB)

\(\widehat{AFM}=90^0\)(MF⊥AC)

Do đó: AEMF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được: 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=5^2+12^2=169\)

\(\Leftrightarrow BC=\sqrt{169}=13cm\)

Ta có: ΔABC vuông tại A(gt)

mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

hay \(AM=\dfrac{13}{2}=6.5cm\)

Ta có: AEMF là hình chữ nhật(cmt)

nên AM=EF(Hai đường chéo của hình chữ nhật AEMF)

mà AM=6,5cm

nên EF=6,5cm

Vậy: EF=6,5cm

c) Xét ΔABC có

M là trung điểm của BC(gt)

ME//AC(ME//AF, C∈AF)

Do đó: E là trung điểm của AB(Định lí 1 đường trung bình của tam giác)

\(AE=\dfrac{AB}{2}=\dfrac{5}{2}=2.5cm\)

Xét ΔABC có 

M là trung điểm của BC(gt)

MF//AB(MF//AE, B∈AE)

Do đó: F là trung điểm của AC(Định lí 1 đường trung bình của tam giác)

\(AF=\dfrac{AC}{2}=\dfrac{12}{2}=6cm\)

Ta có: AEMF là hình chữ nhật(cmt)

nên \(S_{AEMF}=AE\cdot AF=2.5\cdot6=15cm^2\)