Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta ABD\)và \(\Delta HBD\)ta có :
\(\widehat{ABD}=\widehat{HBD}\)( Vì BD là tia phân giác ) (1)
\(BD:\)Cạnh chung (2)
\(\widehat{BAD}=\widehat{BHD}=90^o\) (3)
Từ (1) ;(2) và (3)
\(\Rightarrow\Delta ABD=\Delta HBD\)( góc - cạnh-góc)
b) Vì \(\Delta ABD=\Delta HBD\)( Chứng minh ở câu a)
\(\Rightarrow AB=HB\)( Cặp cạnh tương ứng )
\(\Rightarrow\Delta ABH\)Cân (1)
Ta lại có : BD là phân giác (2)
Từ (1) và (2)
=> BD là đường trung trực của AH
( Vì trong 1 tam giác cân đường phân giác ứng với cạnh đáy đồng thời là đường trung trực)
c) Vì \(\Delta ABD=\Delta HBD\)( Chứng minh câu a )
\(\Rightarrow AD=HD\)( Cặp cạnh tương ứng )
Xét \(\Delta ADK\)và \(\Delta HDC\)ta có :
\(\widehat{KDA}=\widehat{CDH}\)( đối đỉnh ) (1)
\(AD=HD\)(Chứng minh trên) (2)
\(\widehat{KAD}=\widehat{CHD}=90^o\)(GT ) (3)
Từ (1);(2) và (3)
\(\Rightarrow\Delta ADK=\Delta HDC\)( Góc - cạnh góc )
\(\Rightarrow DK=DC\)( Cặp cạnh tương ứng )
d) Áp dụng định lí Py-ta-go ta có :
\(AB^2+AC^2=BC^2\)
\(6^2+8^2=BC^2\)
\(36+64=BC^2\)
\(\Rightarrow100=BC^2\)
\(\Rightarrow BC=\sqrt{100}\)
\(\Rightarrow BC=10\)
Vì AB=HB ( Chứng minh ở câu b)
Mà \(AB=6cm\)
\(\Rightarrow HB=6cm\)
Ta có : \(HB+HC=BC\)
\(\Rightarrow6+HC=10\)
\(\Rightarrow HC=10-6\)
\(\Rightarrow HC=4cm\)
5 )
tự vẽ hình nha bạn
a)
Xét tam giác ABM và tam giác ACM có :
AM cạnh chung
AB = AC (gt)
BM = CM (gt)
suy ra : tam giác ABM = tam giác ACM ( c-c-c)
suy ra : góc BAM = góc CAM ( 2 góc tương ứng )
Hay AM là tia phân giác của góc A
b)
Xét tam giác ABD và tam giác ACD có :
AD cạnh chung
góc BAM = góc CAM ( c/m câu a)
AB = AC (gt)
suy ra tam giác ABD = tam giác ACD ( c-g-c)
suy ra : BD = CD ( 2 cạnh tương ứng)
C) hay tam giác BDC cân tại D
Bài 4: a) Xét ABE vàHBE có:
BE chung
ABE= EBH (vì BE là phân giác)
=> ABE=HBE (cạnh huyền- góc nhọn)
b, Vì ABE=HBE(cmt)
=> BA = BH và EA = EH
=> điểm B, E cách đều 2 mút của đoạn thẳng AH
=>BE là đường trung trực của đoạn thẳng AH
c, Vì AC vuông góc BK => EAK = \(90\) độ
EH vuông góc BC => EHC = 90 độ
Xét AEK vàHEC có:
EAK = EHC (= 90độ)(cmt)
AE = EH (cmt)
AEK = HEC (đối đỉnh)
=> AEK HEC (g.c.g)
=> EK = EC (2 cạnh tương ứng)
Xét HEC vuông tại H (vì EHC = 90 độ )
có EH < EC(cạnh huyền lớn hơn cạnh góc vuông)
Mà AE = EH (cmt) => AE < EC
Bạn tự vẽ hình nha!!!
3a.
Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:
ABD = EBD (BD là tia phân giác của ABE)
BD là cạnh chung
=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)
=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE
=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE
=> BD là đường trung trực của AE.
3b.
Xét tam giác AFD và tam giác ECD có:
FAD = CED ( = 90 )
AD = ED (tam giác ABD = tam giác EBD)
ADF = EDC (2 góc đối đỉnh)
=> Tam giác ADF = Tam giác EDC (g.c.g)
=> DF = DC (2 cạnh tương ứng)
3c.
Tam giác ADF vuông tại A có:
AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)
mà FD = CD (theo câu b)
=> AD < CD.
3a.
Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:
ABD = EBD (BD là tia phân giác của ABE)
BD là cạnh chung
=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)
=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE
=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE
=> BD là đường trung trực của AE.
3b.
Xét tam giác AFD và tam giác ECD có:
FAD = CED ( = 90 )
AD = ED (tam giác ABD = tam giác EBD)
ADF = EDC (2 góc đối đỉnh)
=> Tam giác ADF = Tam giác EDC (g.c.g)
=> DF = DC (2 cạnh tương ứng)
3c.
Tam giác ADF vuông tại A có:
AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)
mà FD = CD (theo câu b)
=> AD < CD.
Hình bạn tự vẽ nhé!!
a). Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:
BD là cạnh chung
Góc ABD = góc EBD (đường phân giác BD)
=> tam giác ABD=tam giác EBD (cạnh huyền-góc nhọn)
b). Gọi I là giao điểm của BD và AE.
Xét tam giác ABI và tam giác EBI có:
AB=EB (tam giác ABD=tam giác EBD)
Góc ABI=góc EBI (đường phân giác BD)
BI là cạnh chung.
=> tam giác ABI=tam giác EBI (c.g.c)
=> AI=EI => I là trung điểm của AE. (1)
=> Góc BIA=góc BIE
Mà góc BIA+góc BIE=180 độ (hai góc kề bù)
=> góc BIA=góc BIE=90 độ.
=> BI vuông góc với AE (2).
Từ (1) và (2) => BI là đường trung trực của đoạn thẳng AE
d). Xét tam giác ADF vuông tại A và tam giác EDC vuông tại E có:
AD=ED (tam giác ABD = tam giác EBD)
AF=CE (GT)
=> tam giác ADF=tam giác EDC (hai cạnh góc vuông)
=> Góc ADF = góc EDC
Chúc bạn học tốt!
Xét tam giác ABD và tam giác HBD ( góc A = BHD =90)
\(\hept{\begin{cases}BDchung\\\widehat{B1}=\widehat{B2}\end{cases}}\)
=> tam giác ABD = tg HBD(ch-gn)
Hình : tự vẽ
a) Do DH vuông góc với BC => góc BHD = 90 độ => HBD là tam giác vuông
Xét hai tam giác vuông ABD và HBD có :
góc ABD = góc HBD ( do BD là tia phân giác của góc B )
BD là cạnh chung
nên tam giác ABD = tam giác HBD ( cạnh huyền - góc nhọn )