K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2021

a)  Xét tam giác BHA và tam giác BAC có

góc BHA= góc BAC (=90)

góc B chung

=> tam giác BHA đồng dạng tam giác BAC (g.g)

10 tháng 2 2018

kho ua

15 tháng 12 2023

a: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

b: Xét tứ giác EMFB có

A là trung điểm chung của EF và MB

=>EMFB là hình bình hành

Hình bình hành EMFB có EF\(\perp\)MB

nên EMFB là hình thoi

c: EMFB là hình thoi

=>EM//FB và EM=FB(1)

Ta có: P là trung điểm của FB

=>\(PF=PB=\dfrac{BF}{2}\left(2\right)\)

Ta có: Q là trung điểm của EM

=>\(QE=QM=\dfrac{EM}{2}\left(3\right)\)

Từ (1),(2),(3) suy ra PF=PB=QE=QM

Xét tứ giác MQBP có

MQ//BP

MQ=BP

Do đó: MQBP là hình bình hành

=>MB cắt QP tại trung điểm của mỗi đường

mà A là trung điểm của MB

nên A là trung điểm của PQ

=>P,A,Q thẳng hàng

2 tháng 2 2021

a/ Xét t.g ABC có I là trung điểmBC ; IN // AB (cùng vuông góc vs AC)=> N là trung điểm AC

Xét tứ giác ADCI có

N là trđ AC

N là trđ DI

\(\widehat{ANI}=90^o\)

AC cắt DI tại N

=> ADCI là hình htoi

b/ Gọi O là giao điểm AI và BN

=> O là trọng tâm t/g ABC

=> OI = 1/3 AI = 1/2 DCt/g OIN= t/gKDN (g.c.g)

=> KD = IO = 1/3DC=> ĐPcm

c/ Theo Pythagoras ; AC = 16 cm

Cí IN = 1/2 AB ; IN = 1/2 ID=> ID = AB = 12

Có \(S_{ADCI}=\dfrac{1}{2}.ID.AC=8.12=96\left(cm^2\right)\)

2 tháng 2 2021

Câu B vào câu c quá tắt

a: Xét ΔABC vuông tại A và ΔDMC vuông tại D có

góc C chung

=>ΔABC đồng dạng với ΔDMC

=>AB/DM=BC/MC=AC/DC

=>6/DM=10/MC=8/3

=>DM=6:8/3=2,25cm và MC=10:8/3=10*3/8=30/8=3,75cm

b: Xét ΔABC vuông tại A và ΔMBE vuông tại M có

góc B chung

=>ΔABC đồng dạng với ΔMBE

=>BA/BM=BC/BE

=>BA*BE=BM*BC

6 tháng 3 2023

Thiếu c

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

\(\widehat{ABC}\) chung

Do đó: ΔABC~ΔHBA

b: Xét ΔAHD vuông tại H và ΔCED vuông tại E có

\(\widehat{ADH}=\widehat{CDE}\)(hai góc đối đỉnh)

Do đó: ΔAHD~ΔCED
=>\(\dfrac{AH}{CE}=\dfrac{DA}{DC}\)

=>\(AH\cdot DC=CE\cdot AD\)

c: Ta có: ΔAHD~ΔCED

=>\(\dfrac{DA}{DC}=\dfrac{DH}{DE}\)

=>\(\dfrac{DA}{DH}=\dfrac{DC}{DE}\)

Xét ΔDAC và ΔDHE có

\(\dfrac{DA}{DH}=\dfrac{DC}{DE}\)

\(\widehat{ADC}=\widehat{HDE}\)(hai góc đối đỉnh)

Do đó: ΔDAC~ΔDHE

d: Xét ΔCAF có

AE,CH là các đường cao

AE cắt CH tại D

Do đó: D là trực tâm của ΔCAF

=>DF\(\perp\)AC

mà AB\(\perp\)AC

nên DF//AB

Xét ΔHDF vuông tại H và ΔHBA vuông tại H có

HD=HB

\(\widehat{HDF}=\widehat{HBA}\)(hai góc so le trong, DF//AB)

Do đó: ΔHDF=ΔHBA

=>HF=HA

=>H là trung điểm của AF

Xét tứ giác ABFD có

H là trung điểm chung của AF và BD

=>ABFD là hình bình hành

Hình bình hành ABFD có AF\(\perp\)BD

nên ABFD là hình thoi