K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2018

\(AB=\frac{2}{3}AC\)

=>  \(\frac{AB}{2}=\frac{AC}{3}\)hay  \(\frac{AB^2}{4}=\frac{AC^2}{9}=\frac{AB^2+AC^2}{4+9}=\frac{BC^2}{13}=\frac{579}{13}\)

đến đây tự tính

26 tháng 7 2017

A B H C

Ta có \(\frac{HB}{HC}=\frac{1}{3}\Rightarrow HC=3HB\)

Xét \(\Delta AHB\)có \(AH^2=AB^2-HB^2\Rightarrow144=AB^2-HB^2\left(1\right)\)

Xét \(\Delta AHC\)có \(AH^2=AC^2-HC^2\Rightarrow144=AC^2-HC^2=AC^2-9HB^2\left(2\right)\)

Cộng (1) và (2) ta có \(AB^2-HB^2+AC^2-9HB^2=288\Rightarrow\left(AB^2+AC^2\right)-10HB^2=288\)

\(\Rightarrow BC^2-10HB^2=288\Rightarrow\left(HB+3HB\right)^2-10HB^2=288\Rightarrow HB^2=48\Rightarrow HB=4\sqrt{3}\left(cm\right)\)

\(\Rightarrow HC=3HB=12\sqrt{3}\left(cm\right)\Rightarrow BC=16\sqrt{3}\left(cm\right)\)

Theo hệ thức lượng trong tam giác vuông ta có \(AB^2=HB.BC=4\sqrt{3}.16\sqrt{3}=192\Rightarrow AB=8\sqrt{3}\left(cm\right)\)

\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{576}=24\left(cm\right)\)

Vậy \(BC=16\sqrt{3}cm;AC=24cm;AB=8\sqrt{3}cm\)

13 tháng 7 2016

tam giác ABC đồng dạng với HBA

=> \(\frac{AH}{BH}\)\(\frac{AC}{AB}\)=\(\frac{3}{2}\)<=> BH= \(\frac{AH.AB}{AC}\)=4

tan giác ABC đồng dạng với HAC

=>\(\frac{HA}{HC}\)=\(\frac{AB}{AC}\)<=> HC = \(\frac{HA.AC}{AB}\)=9

Vậy BC = BH+HC=13

tam giác AHB vuông tại H

=> AB=\(\sqrt{AH^2+BH^2}\)=\(\sqrt{6^2+4^2}\)=\(\sqrt{52}\)

tương tự với AC bạn nhé

AB/AC=4/3

=>HB/HC=16/9

=>HB/16=HC/9=k

=>HB=16k; HC=9k

AH^2=HB*HC

=>144k^2=24^2=576

=>k=2

=>HB=32cm; HC=18cm

AB=căn 32*50=40cm

AC=căn 18*50=30cm

6 tháng 7 2018

tích đúng mình làm cho

17 tháng 9 2021

\(\dfrac{BH}{HC}=\dfrac{9}{16}\Rightarrow BH=\dfrac{9}{16}HC\)

Áp dụng HTL tam giác

\(AH^2=BH\cdot HC\Rightarrow\dfrac{9}{16}HC^2=24^2=576\\ \Rightarrow HC^2=1024\Rightarrow HC=32\left(cm\right)\\ \Rightarrow HB=\dfrac{9}{16}\cdot32=18\left(cm\right)\\ \Rightarrow BC=BH+HC=50\)

Áp dụng HTL tam giác 

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=18\cdot50=900\\AC^2=CH\cdot BC=32\cdot50=1600\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=30\left(cm\right)\\AC=40\left(cm\right)\end{matrix}\right.\)

1 tháng 9 2017

MK KO HIỂU LẮM

9 tháng 7 2018

tyyvbthy

9 tháng 7 2018

A B C D E

Xét tam giác vuông ABC, ta có:

BC2 = AB2+ AC2 ( theo định lý py-ta-go)

BC2 = 242+ 322

BC2 = 1600

BC = 40(cm)

EC = BC : 2 = 40 : 2 = 20(cm)

Xét tam giác vuông ACB và tam giác vuông ECD có:

\(\widehat{A}\) = \(\widehat{E}\) = 90o

\(\widehat{C}\) chung

=> Tam giác ACB = tam giác ECD (g.g)

=> AC/EC = AB/DE

=> DE = AB.EC/AC = 15cm

Vậy DE = 15cm