Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho Tam giác ABC vuông tại góc A, góc B=60 độ. Vẽ AH vuông góc với BC vuông tại H
Tính số đo góc HAc
Lời giải:
Ta thấy:
Xét tam giác vuông tại $H$ là $ABH$ có $\widehat{B}+\widehat{BAH}=90^0$
Xét tam giác vuông $BAC$ có: $\widehat{BAH}+\widehat{HAC}=\widehat{BAC}=90^0$
$\Rightarrow \widehat{B}+\widehat{BAH} = \widehat{BAH}+\widehat{HAC}$
$\Rightarrow \widehat{HAC}=\widehat{B}=60^0$
tam giác ABC vuông tại A
=> góc C = 90 độ - góc B
=> góc C =90o-500
=> góc C = 40 độ
tam giác AHC vuông tại H có
góc HAC = 90 0 - góc C
=> góc HAC = 900-400
=> góc HAC =500
tam giác ABC vuông tại A
=> góc C = 90 độ - góc B
=> góc C =90o-500
=> góc C = 40 độ
tam giác AHC vuông tại H có
góc HAC = 90 0 - góc C
=> góc HAC = 900-400
=> góc HAC =500
Xét tam giác ABC có:
^A+^B+^C=180°(đl tổng ba góc tam giác)
=>^B+^C=180°-a
Vì BI là pg ^B
=>^ABI=^IBC=1/2^B
Vì CI là pg ^C
=>^BCI=^ICA=1/2^C
Ta có:^B+^C=180°-a
=>(^B+^C)/2=(180°-a)/2
=>^IBC+^BCI=90°-a/2
Xét tam giác BIC có:
^IBC+^BCI+^BIC=180°(đl tổng ba góc tam giác)
=>^BIC=180°-90°-a/2
=>^BIC=90°+a/2
Bạn vẽ hình giúp mình nhé. Mình chỉ giải thôi nha!
1.Vì AH vuông góc với BC
=>^AHC=90°
Xét tam giác HAC vuông tại H
=>^HAC+^C=90°
=>^HAC=90° -^C (1)
Xét tam giác ABC vuông tại A
=>^B+^C=90°
=>^B=90° - ^C (2)
Từ (1) và (2)=>đpcm
-----------------------------------------------------------------
Câu này cm tương tự
hình e tự vẽ nhé
a) Xét tam giác BHA vuông tại H có
góc B + góc HAB = 90 độ ( hai góc phụ nhau)
40 độ + góc HAB = 90 độ
=> góc HAB = 50 độ
mà góc HAB + góc HAC = 90 độ ( tam giác ABC có góc A = 90 độ)
Ta lại có góc HAC + Góc C = 90 độ ( hai góc phụ nhau )
=> góc HAB = góc C = 50 độ
a: Ta có: ΔABC vuông tại A
nên \(\widehat{B}+\widehat{C}=90^0\)
\(\Leftrightarrow\widehat{C}=90^0-40^0=50^0\)
Xét tam giác BAH
Có B+BAH=900(vì tam giác BAH vuông tại H)
500+BAH=900
=>BAH=900-500
=>BAH=400
Xét tam giác HAC
Có C+HAC=900(Tam giác HAC vuông tại H)
400+HAC= 900
HAC=900-400
HAC=500
B)Xét tam giác ABH
Có AB2 = HB2+AH2(Theo định lý Pi-ta-go)
AB2=32+42
AB2=25=52
AB=5
Xét tam giác CAH
Có AC2=AH2+HC2 (Theo định lý Pi-ta-go)
AC2=42+42=32=
=( bn nói có vẻ khinh người quá đấy, bài này cả olm ko ai làm đc :V há há-thế giới của bn nhỏ thật >:
A B C H D K E
a) \(\Delta ABHcó: \widehat{A}+\widehat{B}+\widehat{H}=180^o\)
\(\text{mà }\widehat{B}=60^o,\widehat{H}=90^o\Rightarrow\widehat{A}=30^o\text{hay}\widehat{HAB}=30^o\)
b) xét tam giác KDA và tam giác KHA, ta có:
AK là cạnh chung
AH=AD(gt)
DAK=KAH(gt)
=> tam giác KDA = tam giác KHA(c.g.c)
=> KH=KD( cặp cạnh tương ứng)
c) câu c sai đề, ib vs mk lại đề đi-rồi giải tiếp cho =)
Vì tam giác ABC vuông tại A có góc B = 50 độ
=> Góc C = 90 độ - 50 độ = 40 độ
Vì AH vuông góc với BC nên tám giác AHC vuông tại H
Xét tam giác AHC vuông tại H có góc C = 40 độ
=> góc HAC =90 độ - 40 độ = 50 độ
B A H C
Xét \(\Delta ABC\)vuông tại A có :
\(\widehat{B}+\widehat{C}=90^o\)
\(\widehat{B}=90^o-\widehat{C}\left(1\right)\)
Xét \(\Delta AHC\)vuông tại H có :
\(\widehat{HAC}+\widehat{C}=90^o\)
\(\widehat{HAC}=90^o-\widehat{C}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\widehat{B}=\widehat{HAC}\)
mà \(\widehat{B}=50^o\)
\(\Rightarrow\widehat{HAC}=50^o\)