K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2021

a) Tg AHC vuông tại H có :\(\widehat{HAC}+\widehat{C}=\widehat{AHC}=90^o\)

\(\widehat{HAC}+\widehat{HAB}=\widehat{BAC}=90^o\)

\(\Rightarrow\widehat{HAB}=\widehat{C}\)

- Xét tg AHB và tg CHA có :

\(\widehat{AHB}=\widehat{AHC}=90^o\)

\(\widehat{HAB}=\widehat{C}\left(cmt\right)\)

\(\Rightarrow\Delta AHB~\Delta CHA\left(g.g\right)\)

(Dấu đồng dạng bị ngược, khi làm vào bài bạn quay ngược lại nha)

b) Xét tg BAH vuông tại H có :

AB2=BH2+AH2 (Pytago)

=>152=BH2+122

=>225=BH2+144

=>BH2=81

=>BH=9cm

- Do tg AHB đồng dạng tg CHA (cmt)

\(\Rightarrow\frac{HB}{HA}=\frac{HA}{HC}\)

\(\Rightarrow\frac{9}{12}=\frac{12}{HC}\)

\(\Rightarrow HC=16cm\)

- Có : HB+HC=BC

=> BC=9+16=25

- Xét tg ABC vuông tại A với định lí Pytago, ta tính được \(AC=20cm\)

#H

(Ý c,d để suy nghĩ tiếp)

30 tháng 3 2021

A B C H 15 12 M

a, Xét tam giác AHB và tam giác CAB ta có : 

^AHB = ^A = 900

^B _ chung 

Vậy tam giác AHB  ~ tam giác CAB ( g.g ) (1)

Xét tam giác AHC và tam giác BAC ta có : 

^AHC = ^A = 900

^C _ chung 

Vậy tam giác AHC ~ tam giác BAC ( g.g ) (2) 

Từ (1) và (2) suy ra tam giác AHB ~ tam giác AHC 

b, Áp dụng định lí Py ta go cho tam giác AHB ta có : 

\(AB^2=AH^2+BH^2\Rightarrow BH^2=AB^2-AH^2\)

\(\Rightarrow BH^2=225-144=81\Rightarrow BH=9\)cm 

Ta có tam giác AHB ~ tam giác AHC ( cma ) 

\(\Rightarrow\frac{AH}{AH}=\frac{HB}{HC}\Rightarrow1=\frac{9}{HC}\Rightarrow HC=9\)cm 

Áp dụng Py ta go cho tam giác AHC ta có : 

\(AC^2=AH^2+HC^2\Rightarrow AC^2=144+81=225\Rightarrow AC=15\)cm 

c, Vì AM là tia phân giác ^BAC nên \(\frac{AB}{AC}=\frac{BM}{MC}\)

mà \(BM=BC-MC=18-MC\)

do \(BC=BH+HC=9+9=18\)cm

\(\Rightarrow\frac{AB}{AC}=\frac{18-MC}{MC}\Rightarrow18-MC=MC\Rightarrow MC=9\)cm 

\(\Rightarrow BM=BC-MC=18-9=9\)

( hoặc có thể làm thế này * AM là trung tuyến nên MC = BM = 18/2 = 9 cm )

\(\Rightarrow BM=BH+HM\Rightarrow HM=BM-BH\)

thay số vào, mà bài mình sai ở đâu rồi, xem lại hộ mình nhé, mệt quá, cách làm tương tự như vậy 

bì BH không bằng BM nhé do BH = 9 ; BM = 9 xem lại hộ mình nhé 

24 tháng 4 2021

tự vẽ hình nhé 

a, ta có <HBA+<BAH =90 

              <BAH + <HAC=90

\(\Rightarrow\) <HBA=<HAC 

xét \(\Delta AHB\) và \(\Delta CHA\)

<HBA=<HAC 

<BHA=<CHA=90

\(\Rightarrow\Delta AHB\) ~\(\Delta CHA\)

b, Xét \(\Delta ABH\)  vg tại H, áp dụng đl Py ta go ta đc 

\(AH^2+BH^2=AB^2\\ \Rightarrow BH=9\)

Ta có \(\Delta ABH\) ~ \(\Delta CAH\)

\(\dfrac{\Rightarrow BH}{AH}=\dfrac{AH}{CH}\Rightarrow AH^2=BH\cdot CH\)

\(\Rightarrow CH=16\)

Xét \(\Delta AHC\) cg tại H, áp dụng ĐL py ta go ta đc 

     \(AH^2+CH^2=AC^2\Rightarrow AC=20\) 

c, xét \(\Delta ABC\) vg tại A áp dụng đl Py ta go ta đc 

\(AB^2+AC^2=BC^2\Rightarrow BC=25\)

Ta có AM là tia  pg của <BAC 

\(\dfrac{MB}{AB}=\dfrac{MC}{AC}\Rightarrow\dfrac{MB+MC}{AB+AC}=\dfrac{BC}{AB+AC}=\dfrac{5}{7}\\ \Rightarrow MB=10,7\)

 

 

a) Xét ΔAHB vuông tại H và ΔCHA vuông tại H có 

\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{CAH}\right)\)

Do đó: ΔAHB\(\sim\)ΔCHA(g-g)

21 tháng 3 2019

A B C H K I E F

Xét \(\Delta BAC\) Và   \(\Delta ACH\) có :

      \(\widehat{BAC}\)\(=\)\(\widehat{AHC}\) ( cùng = 900 )

           \(\widehat{C}\)là góc chung

 \(\Rightarrow\) \(\Delta BAC\)\(~\)\(\Delta AHC\) ( g - g )     (1)

 \(\Rightarrow\)\(\frac{BC}{AC}=\frac{AB}{AH}\)\(\Rightarrow BC.AH=AB.AC\)

b)  Xét \(\Delta AHC\)có :

  K là trung điểm của CH

  I là trung điểm của AH

\(\Rightarrow\)IK // AC

Do IK // AC :

\(\Rightarrow\)\(\Delta HIK\)\(~\)\(\Delta HAC\) (2)

Từ (1) và (2) =)  \(\Delta HIK\)\(~\)\(\Delta ABC\)

Do \(HE\)\(\perp\)\(AB\)\(\Rightarrow\)\(\widehat{A\text{E}H}\)= 900

      \(HF\)\(\perp\)\(AC\)\(\Rightarrow\)\(\widehat{FHE}\)= 900

Xét tứ giác AEHF có:

\(\widehat{BAC}=\widehat{A\text{E}H}=\widehat{FHE}\)\(=90^0\)

\(\Rightarrow\)AEHF là hình chữ nhật \(\Rightarrow\) AE = HF 

Xét \(\Delta ABC\)\(\perp\)tại \(A\)

Áp dụng định lí py - ta - go

BC=  AB2 +  AC2

52 =  3+ AC2

AC2 = 16

AC = 4 ( cm )

Ta có ;  \(S_{\Delta ABC}\)\(=\frac{AB.AC}{2}\)\(=\frac{3.4}{2}=6\)cm2

                \(S_{\Delta ABC}=\frac{1}{2}.BC.AH\)\(=\frac{1}{2}.5.AH=2,5.AH\)

  \(\Rightarrow2,5.AH=6\)\(\Rightarrow AH=2,4\)cm

Xét \(\Delta AHC\)\(\perp\)tại A

Áp dụng định lí py - ta - go

AC2 = AH2 +  HC2

42 = (2,4)2 + CH2

CH2 = 10,24

CH = 3,2 cm

Ta có :  \(S_{\Delta AHC}=\frac{AH.AC}{2}=\)\(\frac{2,4.3,2}{2}=3,84\)cm2

            \(S_{\Delta AHC}=\frac{1}{2}.AC.HF\)\(=\frac{1}{2}.4.HF=2.HF\)

\(\Rightarrow\)2.HF = 3.84

           HF = 1.92 cm

\(\Rightarrow A\text{E}=1,92\)( Vì HF = AE , cmt)

19 tháng 2 2021
1 tháng 4 2016

M, N ở đâu?

1 tháng 4 2016

Mình​ đã sửa lại đề, mong mấy bạn qan tâm giải hộ mình

a: Xét ΔAHB vuông tại H và ΔCHA vuôg tại H có

góc HAB=góc HCA

=>ΔAHB đồng dạng với ΔCHA

MH/MC=AH/AC=HB/AB

b: Xét ΔABE và ΔCMA có

góc BAE=góc MCA

góc ABE=góc CMA

=>ΔABE đồng dạng vơi ΔCMA

=>góc AEB=góc CAM

=>góc BEA=góc EAM

=>AM//BE

26 tháng 3 2023

Vì sao góc ABE=góc CMA thì bạn lại ko nói. Giải kiểu thầy cô tự hiểu. 

Câu b. Từ H kẻ đường thẳng song song AC cắt EM tại K

Ta chứng minh được BH/BM=EH/EA =>đpcm